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SPACE PERCEPTION WITH NORMAL AND PROSTHETIC VISION 

ABSTRACT 

This report encompasses: a) A unique and metric solution for the differential equations that specify 

the optic-flow of monocularly navigating observer, b) A report on a correlation between individual 

differences in interocular distance and registered depth in random dot stereogram with and without 

pedestal disparities, c) Expansion on a navigational approach to space perception - SPIN theory - 

which suggests that object constancy is obtained during fixations by pure passive navigation 

computations, and across saccades by a combination of ocular and vestibular signals. It is 

suggested that the VOR constraints the rotational and velocity components of the eye to be 

perpendicular, d) Analysis of the degree of uncertainty offered by the inferential, direct, and 

computational approaches in cognitive psychology as illustrated by their window metaphors. 

Visual stability in normal and prosthetic vision is examined and leads to newly stated magnification 

and distance paradoxes. A telescope metaphor, which is a modified Mach-Gibson visual-ego 

metaphor with a zooming feature, is suggested as a model that can resolve the paradoxes, e) A 

computer system which simultaneously displays motion parallax yoked to head movement and 

binocular disparity, with measurements of the virtual parallax evoked by head movements in static 

RDS. 
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CHAPTER 1: INTRODUCTION 

Fundamental problems in space perception are: a) How can a mobile observer navigate in 

space on the basis of retinal and extraretinal signals? and b) How are the perceptual constancies of 

position size and shape obtained during fixation and across eye and head movements? These 

questions are accounted for by the SPIN theory - a navigational approach to space perception - that 

served as a theoretical framework to the present work. The goals of this work were: a) to solve the 

differential equations specifying the optic flow of an eye navigating in 6 degrees of freedom, and 

b) to expand theoretically on the SPIN theory including formalization of constraint(s) that are 

imposed by the laws of eye movements and the VOR, and the question of how passive system can 

determine perceptually whether its computations convey veridical depth. 

The main thrust of the research was focused on the problem of passive navigation, e.g. 

how a system can navigate without any external information.   To address this question 

computational models of vision are utilizing information conveyed by the optic flow and try to 

recover the egodistance and the 6 pure motion parameters (3 rotational components and 3 velocity 

components) of the eye in space. This is a two century old problem and so far led to indeterminate 

solutions which means that the problem can be solved only up to a scalar in the velocity vector. 

This restriction is named nowadays as the scale ambiguity problem. In contrast, the present work 

discovered a unique metric solution to the problem. It is presented in chapter 2 and involves a 

simultaneous solution of a system of 5 linear equations. Two main features made this solution 

possible. The first is the application of navigational considerations that added a constant integration 

factor that in our case turned out to be an arbitrary magnitude, the second is the positioning of eye 

system origin at the geometric center of the eye instead of at the pinhole. This feature added a 

inhomogeneous element to the coordinate's world points. We note that since the problem of depth 

from motion is isomorphous to depth from stereopsis and since the present solution utilizes 

triangulation, it may be applied to stereoscopic vision as well. 



Chapter 2 represents only a small fraction of the computational work invested on this issue. 

A more comprehensive account is given in Appendix D of this report which comprises the M.A. 

thesis of Alex Kononov (who did his work within the framework of this project). In fact, three 

different approaches were applied to solve the differential equations of the optic flow. These were 

the differential non-linear, the differential linear and the discrete approaches. A major achievement 

of the present work is the ability to solve, in all three approaches, for the rotational component of 

the eye irrespective of the distance of points and velocity. The solution in the differential linear is 

given in chapter 2 and the solution in the discrete case for points along the same meridian is given 

in Appendix D of the appended Kononov's thesis. 

Chapter 3 presents a study that focuses on one narrow aspect of stereoscopic depth 

constancy i.e., the question of how the metric measure of interocular distance does affect depth 

appreciation in random dot stereogram. Geometry of binocular vision shows that disparity is 

scaled by the inverse of the square of the viewing distance. This is what is known as the inverse 

square law which also sets the relation between the latter magnitudes and depth and interocular 

distance (IOD). While there are many studies on the effects of viewing distance and disparity on 

perceived depth, little work has been done on the effect of IOD. The latter effect can be investigated 

either by optical modification of the natural IOD, or by using individual differences in IOD as is 

done in the present study. The evaluation of the effect of this metric measure has theoretical and 

practical implications. In four correlational experiments, a large pool of observers ranging in age 

from 5 to 63, males and females, with or without corrected vision, with IOD ranging from 4.9 cm 

to 7.3 cm, were presented with the same stereogram depicting a cyclopean square hovering over 

the background. The stereogram was viewed by all observers from the same viewing distance. In 

different experiments the background had -2, 0, +2 pixel units disparities while the square had 

always a positive disparity. Observers had to align a real probe, viewed binocularly with the 

perceived depth of the square and the background. The two alignments (measured in cm), which 

we refer to as registered depth, were plotted against the observers' IOD as a quasi-independent 



variable. The individual depth judgments fell nicely on the theoretical curves predicted by the 

inverse square law and without the need to fit a free parameter. The theoretical implications of these 

findings to the issue of perceptual constancy as well their practical implications to the design of 

virtual reality, head mounted, and other stereoscopic displays are discussed. 

Appendix A presents the SPIN theory-a navigational approach to space perception - that 

provides a computational answer to the perceptual constancy problem. The theory postulates that 

mental representation is exocentric and that in normal and uncorrected vision objects are perceived, 

within measurement error, at their veridical location. There is a distinction between passive 

navigation where retinal signals are the sole source of information, and active navigation where 

extraretinal signals are combined with retinal signals. The theory postulates that the optic flow has 

all the necessary information for 3-D and self motion reconstruction. During saccades extraretinal 

signals are utilized to obtain the continuity of visual experience. The theory takes into account the 

Listing and Donders' Laws of eye movements and the Vestibulo-ocular reflex and suggests that the 

latter can be characterized by constraining the rotational and velocity vectors to be perpendicular. In 

that case, the eye motion in space becomes purely rotational and the computational procedures may 

be simplified. For scaling the reconstructed world it is suggested that the system utilizes three 

intrinsic scales. For monocular vision the scale is the radius of the eyeball. For binocular vision the 

scale is the Inter-ocular distance. For active navigation the scale is the distance between the eye 

system origin and the head system origin. Some empirical support for the conjecture of the role of 

Interocular distance as an intrinsic scale in binocular vision is presented in chapter 3. The question 

of the impairments to veridical space perception caused by prosthetic vision is discussed in more 

details in Hadani (1991) in relation to Night Vision Goggles. In Appendix B, this question is 

discussed by referring to the effects of simple lens, and in chapter 3 it is discussed for the 

hyperstereo case created by the use of telestereoscope. The simulation of the navigational 

procedures of project-onto-the-retina and project-out-in-space are presented in Hadani et al. 

(1995). In principle, it is possible to use the computational model of chapter 2 to predict the 



location in space that objects will be perceived when the observer utilizes prosthetic vision. These 

predictions have to consider one additional factor; the esoteric adaptation capacity. In our view the 

latter factor is a scalar magnitude and can be determined empirically. 

Appendix B deals with the problem of veridicality of space perception in normal and 

prosthetic vision. Perceptual constancy of position size and shape during head and 

eye-movements, is a problem dealt with by the inferential and direct perception approaches, and 

more recently, by computational vision. Yet it is not fully understood. To explain the essence of 

visual perception, different approaches utilize window metaphors through which the hypothetical 

mind's eye observes the world. In the inferential approach the window, called Alberti's window, 

is located in space between the observer and the objects. In the Gibsonian direct perception 

approach the window, called the Visual Ego, is fixed to the head. In computational vision the 

"window" is fixed to the eye, but the nature of the effective window after the computations are 

carried out remains ambiguous and depends on whether one assumes relative or absolute depth 

perception. In Appendix B we examine the theoretical meaning of the various windows, and 

suggest two versions of the same window metaphor: One represents the perception of relative 

depth, and the second, absolute depth. For both versions the window can be regarded as an 

adaptive zooming telescope that preserves stability of a 3-D world when the effective magnification 

is 1:1 and when the images projected on the mind's eye are collimated. Thus, the mind's eye can 

be conceived as a fictitious observer (say, an array of spatiotopically mapped receptive fields) 

viewing the world via non-magnifying telescope, and the objects are seen at optical infinity (first 

view) or, at their veridical egodistance (second view). It is argued that the stability problem cannot 

be accounted for by the Alberti's window and when analyzed with the Visual Ego leads to 

perceptual puzzles which we name the "Magnification and Distance Paradoxes." These puzzles 

become more enigmatic when observers use head mounted optical devices, which modify the 

effective retinal magnification, visual stability, and egodistance. With simple observations that can 

be performed by any interested reader, we demonstrate that the perceptual paradoxes raised by the 



use of head mounted devices may be resolved with either version of the telescope metaphor. In this 

an^ovdV the differences between the three approaches to visual perception is analyzed in terms of the 

degree on uncertainty in mapping between distal stimulus and its mental representation. These 

differences are illustrated with the pertinent window metaphors. 

Appendix C deals with the development of a computer system which simultaneously 

displays motion parallax yoked to head movement and binocular disparity, with some related 

psychophysical measurements. It is known that motion parallax that is yoked with head 

movements produces monocular depth perception in a random dot pattern. The existing displays 

required a sophisticated hardware system that requires costly hardware and electronic workshop 

facilities. In this chapter we show how such a display system can be produced with any Intel 

processor based PC with no additional cost for hardware. An adapted joystick sampled by standard 

game-port can serve as a provisional head movement sensor. Color monitor resolution in 

displaying motion was effectively enhanced 16 times by the use of anti-aliasing enabling to display 

array of 1000 random dots in real time (double buffer mode) with a refresh rate of 60 Hz and 

above. The color monitor enabled the use of anaglyph method, thus combining stereoscopic and 

monocular parallax manipulations on a single CRT display without refresh rate cost. The power of 

our display is demonstrated by psychophysical measurements in which three subjects annulled 

head movement contingent illusory parallax, evoked by static random dot stereogram, with real 

counter-parallax. The amount of the real counter-parallax required to annul the illusory stereoscopic 

parallax monotonically increased with disparity. 

Chapters 2 and 3 are in progress. Appendix A was published in the 1995 special issue 

Spatial Orientation (AFOSR) of the Journal of Vestibular Investigation vol. 5, 6, 443-454. 

Appendix B is in press and will appear in Constraining Cognitive Theories - Issues and Options, 

Z. Pylyshyn (Ed.), Norwood: Albex Publishing. Appendix C is in press and will be published in 

a special issue on display systems in visual psychophysics of the Journal of Spatial Vision. In 

addition, a peer commentary entitled "Computational aspects of motion perception during self 



motion" was published within the framework of this project in Behavioral and Brain Sciences 

1994,17,319-320. 
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NEW DISCOVERIES 

Even though we think that some of our ideas are patentable, so far no steps were taken i 

this direction. One potential application of the formal model is to convert computationally the 

effective vantage point of a camera. If the images of a moving imaging device, for example that of 

a thermal imaging system of an helicopter, are sampled and the motion field is extracted, then the 

formal model can be applied to calculate the true location in space of objects in the field of view. If, 

in addition, the pilot's vantage point is known, then a new image of the reconstructed objects can 

be created which represents their view from the pilot's vantage point.. The latter images can then 

be presented to the pilot via his helmet display system and will provide him veridical perception of 

the objects. We also conceive the potential use of the formal model to the construction of optical 

range finder for a given point in the visual field, and/or whole image range finder. 
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CHAPTER 2: 
PASSIVE NAVIGATION FOR AN EYE IN 6 DEGREES OF FREEDOM 

Itzhak Hadani, Alex Kononov and Harry L. Frisch 

2.1.     INTRODUCTION 

One primary task of the visual system is to enable the organism to navigate in 3-D space, 

and everyday human experience and performance indicates that vision acquires information about 

the objects in the world with impressive speed, reliability, and generality. When the visual system 

relies only on retinal information, the spatial orientation capacity is called autonomous or passive 

navigation (Bruss & Horn, 1983; Horn, 1986). Navigation implies that the eye is constantly 

moving in space and changes its position relative to objects. Pure geometrical considerations 

predict that the retinal image of the objects is subject to considerable instability and to continual 

severe deformations of size and shape. However, these effects are not reflected in the introspective 

impression of the objects which attain constant position size and shape. This state of affairs raises 

the question: How can the capacity of passive navigation be carried out while preserving the 

perceptual constancies of objects? The common view, based on many theoretical analyses, regards 

this problem as indeterminate (see e.g. Tsai & Huang, 1985; Ullman, 1979; Bruss & Horn, 1983; 

Koenderink & van Doom, 1991). In this respect the Space Perception In Navigation (SPIN) 

theory differs in that it considers project-onto-the-retina and project-out-in-space aspects of mental 

representation (Hadani, 1995). These considerations lead to a simple formal model of coordinate 

transformation. Earlier work (Hadani et al, 1994) demonstrated the feasibility of a metric solution 

in the coordinate transformation model for an eye in pure rotation. Here we show a solution for the 

more general case of an eye in 6 degrees of freedom. 

To see how the idea of coordinate transforation is applied to vision, imagine a world which 

is comprised of a single static object and a freely navigating eye. Consider two cartesian coordinate 

systems: one is attached to the object and the other is attached to the eye. Indeed, each object-point 

has a 3-D representation in both coordinate systems, one is time invariant and the other is time 



variant. If the relative position between the two systems is known, the time varying representation 

of the object in the eye system can be translated, by linear transformation, into a representation in 

the world system. This enables an observer attached to the moving system to calculate and adopt 

the representation of the object in the static system. There is, though, one essential difference 

between visual reality and this ideal model. The eye has only a two-dimensional perspective 

representation of the object and the depth coordinate is missing. Thus, in order to obtain a world- 

centered representation, the distance (depth) of the objects have to be recovered too. The main 

question is whether an observer who is attached to the moving system can reconstruct from retinal 

signals all these magnitudes. This problem has a long history in optics and vision research (see 

e.g. Cutting, 1986; Koenderink & van Doom, 1991). While recovering structure and motion 

parameters can be metrically solved for 4 non-coplanar points and three orthographic views 

(Ullman, 1979; Koenderink & van Doom, 1991), it has no unique solution in perspective views. It 

is argued that since the moving observer measures only angles, there is no way to get scaled 

distances of objects or egomotion. In contrast, we show here that the coordinate transformation 

model can be realized by a passive visual system when navigational considerations are added. 

Formally, the problem of passive navigation is posed as follows (Duric et al., 1995): 

Given a sequence of images taken by a monocular observer undergoing continuous rigid motion in 

a static environment, recover the distance of objects and the translation and rotation parameters of 

the observer (egomotion). The most general case of the observer's motion is unrestricted rigid 

motion, which can be represented by six independent parameters: three rotations and three 

translations. Broadly speaking, 3-D reconstruction is a two step process. First, the system needs to 

compute the instantaneous image velocity field or the retinal optic flow, or to solve the 

correspondence problem (Ullman, 1979) e.g. to establish object identity between elements in 

successive images. Second, the system has to recover egomotion and distances of objects from the 

data. This paper is concerned with the second stage of the process assuming the image velocity 

field is given. 

10 



Passive navigation has been studied extensively in the past two decades (Hadani et al. 

1978, 1980; Ullman, 1979; Longuet-Higgins & Prazdny, 1980; Tsai & Huang, 1985), and is still 

one of the major topics of interest in the field of machine vision (Fermuller & Aloimonos, 1995: 

Duric et al., 1995) because in this field the inputs are perspective projections taken by a camera. 

Three types of approaches, the discrete, the continuous, and the least-squares, have been pursued 

in most of the earlier works. In the continuous (differential) approach, the optic flow is used to 

extract the navigational parameters and structure from a point and its nearest neighborhood 

(Longuet-Higgins & Prazdny, 1980). In the discrete approach, information at only a few points is 

used to determine structure and the motion parameters (Longuet-Higgins, 1981; Meiri. 1980; 

Nagel, 1981; Tsai & Huang, 1985). In the least-squares approach, motion parameters are found 

that are most consistent with the estimated image velocity over the entire image (Prazdny, 1981; 

Bruss & Horn, 1983). One of the most thorough studies on uniqueness of the solution was 

carried out by Tsai and Huang (1985). Utilizing the discrete approach, they have shown that the 

motion parameters can be determined up to a scaling factor in the translation vector. The latter 

shortcoming is common to all alternative navigational approaches and the problem is called the 

indeterminate scale problem (see e.g. Fermuller & Aloimonos, 1995 for recent restatement of the 

problem). 

The indeterminate scale problem has created theoretical difficulty in understanding human 

space perception mainly because motion parallax is considered as a primary cue for metric depth. 

The problem was illustrated by Bruss and Horn (1983, p. 6) as follows: "Consider a surface S2 

which is a dilation by factor k of a surface Sj. Further, let two motions denoted by V1 and V2 have 

the same rotational component and let their translational components be proportional to each other 

by the same factor k (we shall say that V1 and V2 are similar). Then the optical flow generated by 

Si and Vi is the same as the optical flow generated by S2 and V2." Thus, if a biological system 

1 1 



applies computations on the optic flow to recover its own motion parameters and the distance and 

structure of objects, then there is no way in which such a system could decide whether the object is 

"small and nearby" or "big but far away" (Ullman, 1979, p. 199). Let us examine the theoretical 

implications of the latter statement. In the first place it means that for a given velocity field an 

infinite family of visual objects varying in size and correspondingly proportional infinite 

magnitudes of observer's velocities can be reconstructed from the same retinal flow. As a result, 

metric scale for egodistance perception and egomotion cannot be established. The current view is 

that veridical precepts of objects can be obtained only with additional external information; more 

specifically, by information on egomotion that is given by the vestibular system (see e.g. Landy et 

ah, 1995). Indeed, it is known that the perceptual mechanism has access to extraretinal signals - 

ocular and vestibular - about the motion of the eye in space (see e.g. Henn et ah, 1984) and can 

combine them with retinal information. However, it is argued that the known properties of 

extraretinal signals make them insufficient to accurately supplement retinal signals because of the 

physiological noise in the oculomotor system (MacKay, 1973) and the insensitivity of vestibular 

system to linear motion (Howard, 1986). Therefore, they cannot fully account for the high degree 

of visual stability that we normally experience. Thus, one need to turn to retinal signals as a reliable 

and accurate source of information for navigational capacities. 

Without violating generality, and for the sake of abbreviation and mathematical simplicity, 

we chose to present the details of our derivations in the differential approach. However, it can be 

shown that the same results can be obtained in the discrete approach directly from the flow field 

(Kononov, 1996, Appendix D). But the latter approach involves long and cumbersome 

derivations. The differential analysis, on the other hand, has two alternative ramifications. One 

alternative assumes that objects in space are comprised of a continuous rigid surface and each point 

projects onto the retina a Dirac delta function. This case requires one to consider, in addition to 

distance, the unknown structure gradient of the surface. In practice, the gradient components can 

be eliminated in the partial spatial derivatives (see Appendix A in Hadani et ah, 1994) but also 

12 



leads to long and cumbersome derivations. The second alternative presented here considers 

projection of a single general point that has no structure and leads to much simpler expressions. It 

is assumed that every point in space projects onto the retina a point spread function (Hecht & 

Mintz, 1936). The point spread function creates for the point a small flow field in its 

neighborhood which enables estimation of the spatial derivatives. This approach also has the 

benefit of relaxing the rigidity assumption. The computational and psychophysical arguments 

justifying the need to account for the perception of a single point (say, a star) were presented at 

length elsewhere (Hadani et al, 1994). The latter are based mainly on the substantial visual 

stability shown in autokinesis, e.g. when the input to the system is a single static point observed in 

complete darkness. 

2.2.     KINEMATICS OF RETINAL PROJECTION IN 6 DEGREES OF FREEDOM 

A.        Definition of notations 

P, Q, R position vectors in world system 

p, q, r position vectors in eye (moving) system 

X, Y, Z cartesian coordinates of a point in the world system 

x, y, z cartesian coordinates of a point in the eye system 

9, (p , p retinal polar coordinates 

0t, 9t0 partial derivatives with respect to the variables as denoted by the subscript 

0O, 6j coordinates of point in temporal order (view) as denoted by the subscript 

V velocity vector in world system 

v velocity vector in eye system 

CO rotation vector in eye system 

A, B two components of CO in new basis 

13 



D, E two components of v in new basis 

Va, Vb compound variables of A, B, C, D 

A a flow field position-invariant constant 

M matrix that transform vectors from world to eye coordinates 

MT matrix that transform vectors from eye to world coordinates 

I identity matrix 

K , X, u Euler's angles that specify the transformation matrix M 

c radius of the eyeball 

c radius vector of the eyeball 

B. Basic assumptions 

1) The eyeball is considered as a rigid sphere with a radius c. 

2) The eye optics is reduced to a pinhole, thus preserving the central projection (perspective) 

property of the retinal flow. 

3) Each point in space projects on the retina a point spread function. 

4) The retinal flow is twice differentiable with respect to space. 

C. Model 

Let X, Y, Z and x, y, z be two cartesian coordinate systems fixed with respect to space and 

the eyeball respectively as shown in fig. la. The eye system origin coincides with center of the 

sphere. The optical axis is defined as a line passing through the center of the sphere and the pinhole 

coinciding with the y axis. 

14 



X.Y.Z 

Fig. la. Vectorial relations between points in space and a moving eye given in world notation. P is 
the time invariant position of the point in object-centered system. Q(t) is a vector connecting 
between the systems origins. R(t) is a vector connecting the moving system origin and the point. 
The motion of the eye-system is depicted by the vectors v and co given in eye-system notation. 

15 



The eye system is assumed to have 6 degrees of freedom. These are v = [vx, vy, vz] and CO = 

[cox, coy, coz], and denote the linear velocity and angular velocity vectors of the moving system, 

respectively. From fig. la it is clear that 

P = Q(t) + R(t) , (1) 

where P = [X, Y, Z] is the position vector of object point in the fixed system, Q(t) = [X(t), Y(t), 

Z(t)] is the vector connecting eye system and the fixed system origins. R(t) is a vector connecting 

the point and the eye system origin. Note that P is not time dependent. 

The point P in the fixed system can be mapped into the eye system by 

r(t)=M(t)(P-Q(t)), (2) 

where M(t) is a 3x3 orthogonal transformation matrix (MTM = I) the elements of which are 

functions of K, X, u. The latter are taken here as Euler angles. 

The absolute time derivative of P with respect to time is 

dP 

— = qt + rt + COx (q + r) = 0 , (3) 
dt 

Defining the eye system velocity as v = qt + CO X q and substituting this expression in (3) 

yields 

v + rt + CO x r = 0 . (4) 

Each object point r = [x, y, z], given in terms of the eye system, is transformed into 

spherical retinal coordinate system (fig. lb) by the following time invariant and one-to-one 

mapping. 
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zl 

Surface of 
vision 

Retinal 
projection 

Fig. lb. Definition of cartesian to polar mapping of surface points to retinal coordinates. 6 and cp 
are eccentricity and meridian angles, respectively, p and p' are distances of a surface point from 
the pinhole and origin, respectively, c is the radius of the eyeball. 

17 



y- c 
0=2 cos-i  

V x2 + (y-c)2 + z2 

X 

(p = tan-1 —, (5) 
z 

p = Vx2 + (y-c)2 + z2 , 

6 = 0 - 7t/2,    q> = 0 - 2K,    p = 0 -   oo 

where 0, cp are retinal location and p is the unknown distance between the object point and the 

pinhole. The magnitude c representing the radius of the eyeball attains a significant role in the 

model by serving as a metric unit. The inverse mapping from retinal coordinates to eye system 

coordinates is 

9 
x = p sin —sin cp , 

2 

e 
y = c + p cos —, (6) 

2 

0 
z = psin — cos (p . 

2 

Differentiating (6) with respect to time and substituting in (4) yields three scalar differential 

equations in   0t , cpt, pt. The magnitude pt, which is not an observable quantity, can be 
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eliminated from this set of equations by sacrificing one, yielding the following flow equations: 

(7) 
2 e e e 

6t = — [VyS/'/l (p + CCOS —)(coxCOS(p - COzS/'/7<p) - COS—(VyS/ncp + VzCOS(p)] 

e 
(pCOS— + C)(a>xS//7(p + COzCOS(p) - (VxCOS(p - VzS//7q>) 

2 
(Pt   = ©y (8) 

e 
p S//7 — 

2 

The observable change of retinal representations of any point in the visual field is given by 

the two flow equations as a function of seven unknowns p, vx, vy, vz, cox, coy, coz. 

Since a point has, by assumption, no structure, p is taken as a scalar. Therefore, it follows 

that pe = p = 0. It turns out that a great simplification of the derivations is obtained by changing 

vx, vz and cox, coz into a new basis A, B, D, E as follows: 

A = (£>z COS cp + coxS/A7 cp , (9) 

B = ooz sin cp - coxCOS cp , (10) 

D = vz cos cp + VxS/7? cp , (11) 

E = vz sin cp - VxCOS <p . (12) 

Substituting (9)-(12) in (7)-(8) and taking the first and second derivatives of the motion field with 

respect to 8 and cp yields ten equations as shown in Appendix A. It turns out that not all of these 
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equations are independent. Moreover, their structure is such that all components of v are scaled by 

1/p. This is how the indeterminate scale problem is reflected in the present derivations. At this 

stage it is essential to show what information can be derived from these equations. 

To isolate coy in Eq. (8), we take the second partial derivative of cpt with respect to (p [or 

eq. (A 10) in Appendix A] and find 

COy = - (pt - (ptcpcp • (13) 

A and B which are the equivalents of cox and coz have each several solutions, for example 

0 

' <Ptq,q,S//72 + 9t9(p 

e 2 

A = cot — (pttp(p -2<pte = 2         , (14) 

2 sin 9 

9 0 9 

-2S//7—((pt(ps/n2— - 9te) - cos—{0t<p<p + 9t) 

9t 2 2 2 

B = 29tee+ —= ■       (15) 
2 9 9 

2 cos— S//72— 

2 2 

Note that equations (13)-(15) enable one to solve uniquely for CO irrespective of p and v. 

This reduces the number of unknowns left to be found to four. Some independent relations can be 

derived for the other unknown magnitudes. First, two new variables are defined as 

Va = cA + E, (16) 

Vb = cB-D, (17) 
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which enable one to solve for 

Va 0te<p 

j 

P e 
sin — 

2 

vb e e 
— = -Bcas  9t(p 5/«   , 

p 2 2 

V2 ötqxp  + 9t 

P e 
2s in  — 

2 

(18) 

(19) 

(20) 

Equations (18)-(20) comprise a set of three independent equations with four unknowns and cannot 

be solved uniquely. Note that Va and Vb are both scaled by 1/p. It can be shown that: 

-sin <|) + (Vb/Va) cos (j) ccox + vz 

A =      =     , (21) 

-cos (j) - (Vb/Va) sin ty ccoz - vx 

where Vb/Va can be computed as follows: 

Vb ( 2 B + Qm ) 

 =     . (22) 
Va 2 [ A cos(Q/2) + sin(Q/2) ^ ] cos (6/2) 

Thus, A is comprised of 4 pure motion parameters and is a position invariant constant for a given 

flow field. 
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D.        A unique solution for two views 

Given two views that enable extraction of all the aforementioned magnitudes, one can 

perform the following experiment: Find the predicted direction and magnitude of v by selecting 

arbitrary magnitudes of p. Figure 2 shows the result of such an experiment in which the predicted 

p of a given point is changed while CO is being kept fixed. The figure shows that the direction of 

the predicted v changes with changing p. This result is directly derived from Eqs. (18) and (19) in 

which Va and Vb are compound variables of CO and v and scaled by 1/p. Nonlinear relation 

between velocity and egodistance is contrasted with the linear dependence predicted by the 

indeterminate scale problem. Changes in the direction of v with different magnitudes of p indicates 

the existence of a unique solution to the problem, even for two views, because it means that there 

should be only one direction of v which is associated with veridical p. 

At this stage of the analysis the navigational considerations enter. The navigational process 

is broken into a sequence of infmitesimally small discrete steps. Then, initial conditions have to be 

set. These are: an arbitrary starting orientation K0, XQ, U0 required to set the value of M(to)> and an 

arbitrary origin of the world coordinates q(to). Note that setting the initial values does not involve 

selection of any of the unknown magnitudes. The state equation (1) is written for the first snapshot 

as 

P = MT(to)[r(t0)-q(to)]. (23) 

Assuming that CO was calculated it is possible to calculate M(ti) and write the state equation for the 

second snapshot as 

P = MT(ti)[r(t1)-q(t1)]. (24) 
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Fig. 2. The predicted direction angle between of the velocity vector v and co is plotted against 
different values of predicted distance p. The true p is 12.1 cm. The non-linear relation is typical to 
the present definition of the optic flow and indicates the existence of unique solution for two views. 
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Since 

Q(t + dt)-Q(t) 
Hm  = Qt(t) = V(t) 

dt->0 dt 
(25) 

it follows 

Q(ti) = Q(to) + Vdt  . (26) 

Equation (24) can be written in eye system notation as follows 

MT(ti)q(ti) = MT(t0)[q(t0 ) + vdt]      . (27) 

Multiplying both sides of (25) by M(ti) yields 

q(ti) = M(ti)MT(to)[q(to) + vdt]       . (28) 

Substituting q(ti) in (24) and subtracting the resultant equation from (23) yields after algebraic 

manipulations 

MT(t0)r(t0) - MT(ti)r(ti) + MT(t0)vdt = 0      . (29) 

Multiplying both sides of (27) by M(to) yields 

r(to)-M(to)MT(ti)r(ti) + vdt = 0   • (30) 

Equation (30) comprises a set of 3 (linear) scalar equations. Taking dt = 1, these equations with 

any two of Eqs. (18)-(20) are written in discriminant form as a set of 5 linear equations with 5 

unknowns as 

mu   mij2    1 0 0 Po ki 

n*2,i   m9,2   0 1 0 Pi k2 

m3,i   m3,2   0 0 1 • Vx 
= k3 

1114,1     0      0 0 -1 vy CCÜ 

m5,i     0      1 0 °J i 

1 Vz cce 

(31) 

where the elements of the three first rows of (31) are 

24 



m 
ij 

sin(Q0/Q2) sinqo 

cos(Q0/2) 

sin(Q<)l2) costyQ i= 1, 2, 3     j = 1   , 

and thus 

(31a) 

my = -M(t0)MT(ti) 

sin(Q\/2) sinq>\ 

cos(Q\/2) 

sin(Q\/2) cosq>\ 

(31b) 

i= 1, 2, 3     j = 2   , 

and thus 

ki =  cM(t0)MT(tl) 

"o" o" 
1 -   c • 1 

0 
■ 
_0_ 

(31c) 

i=l,2,3 

mi,j    = 

Note that the elements of m^i andm;^ (with i = 1,2,3) are factored by p0 and pi respectively, 

because the free floating magnitude c becomes part of the constant element vector k;. The last two 

rows of (31) are derived from eqs. (18) and (19) where 

-QtQVo/sin(Q0/2) 

-B0co5(e0/2)- <pt(posf»(6o/2) 

Note that all the components of the constant-elements-vector are scaled by c. The determinant of 

the coefficient matrix is 

mum3;2 - m3)im1;2 - mi)4mi;2 - ml55m3>2   . (31e) 

Substituting for my and collecting terms the following relations have to hold for singularity of the 

solution 

sintpo     -costyo 

cosqo      sinyo 

Old) 
,   i = 4, 5    j=l   . 

25 



e0 (ccöz-Vx) 6o (ccox+vz) 

[sin—sirupo ] 1113,2= [sin—coscpo + ] mi^   . (31f) 

2 po 2 Po 

The actual solution to the problem, starting with eq. (23), seems to be difficult to follow 

and needs some clarifications. First it was based on the fact that CO could be recovered for any 

view irrespective of v and p. This enabled to calculate the transformation matrixes M;  Second, 

triangulation considerations were made that provided the 3 first rows of system (31). The triangle 

embodied in eq. (30) is shown in figure 3. It is created by the visual point, and the origins of the 

eye system at t0 and at ti. The figure depicts with solid lines the sides of this triangle where Ro, 

Ri, Vdt are given in terms of the world system. 

Indeed all the pertinent magnitudes have to be brought into the same space and time frame which is 

in this case the eye system at to. r(to) creates no problem because it is already given in term of this 

frame of reference. r(tj), however, is needed to be transformed twice; first by applying MT(ti) 

which transforms it into world system notation at 11, then by applying M(1Q) which transforms the 

latter into eye-system notation at to. For each of the triangle sides; Ro and Ri, the computational 

system has its polar 3-D representation given in eqs. (6) with pj as unknown. The last two rows 

of (31) deal only with the first view (to). They are derived from eqs. (18) (19) by multiplying both 

equations with po. In addition, Va and Vb are transformed to their old basis by applying eqs. (9)- 

(12), and (16)-(17). We note that the same solution can be obtained by the differential approach 

without the need for the assumption about the point spread function and on the sole basis of the 

primitive flow equations (7)-(8). The latter solution is also based on the fact that CO and all the 

pertinent magnitudes embodied in eqs. (18)-(19) can still be recovered irrespective of v and p 

when the scene is comprised of, at most, 5 rigid points (Kononov, 1996). 
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Y 

Fig. 3. The figure demonstrates how the solution for the navigational problem was obtained by 
triangulation. The two views of the world taken by a single eye are separated by the displacement 
Vdt which establishes the base of the triangle. The basis and the other two sides of the triangle; Ro 

and R\ are transformed to their eye system notation at to, with po and pi as unknowns This 
results in 3 independent equations where all notations are brought to a common frame of reference 
in time and space. In this scheme the selection of the world system origin is arbitrary. 
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A MathCad simulation of the algorithm was written and tested with many numerical 

examples. In general, the algorithm solved the navigational problem with an "infinite" precision. 

Moreover the three independent Eqs. (18)-(20) were found to be consistent in the sense that the use 

of any two of them produced an accurate solution, even for the same numerical examples. 

Inspection of the expression of the determinant of the coefficient matrix, and systematic 

investigation of the algorithm revealed several low probability singular conditions. These are 

1) when the point lies on the optic axis, 

2) when m352 or mi(2 equals zero. This requires that the pertinent entries of the matrix  M(to) 

MT(tj) equals zero, 

3) when CO = 0. This is the most restrictive singular condition found. 

A flow chart that summarizes the various stages of the algorithm is shown in fig. 4. The 

figure shows stages of the project-onto-the-retina and project-out-in-space of a static visual point. 

These involve the transformation of the point's spatial coordinates into retinal coordinates, 

followed by a stage of retinal motion extraction (see e.g. Hadani & Barta, 1989). The motion field 

is than processed to calculate the movement parameters of the eye in space and the distance-from- 

the-eye ofthat point. The motion parameters of the eye are then processed to calculate the project- 

Insert Figure 4 here 

Fig. 4. A flow chart depicting stages of the navigational model. These involve the transformation 
of the point's spatial coordinates into retinal coordinates (project-in), followed by a stage of retinal 
motion extraction. The motion field is then processed to calculate the egomotion parameters and the 
egodistance of the point. The egomotion parameters are processed to update the elements of the 
predicted inverse transformation matrix. The distance of the point with its retinal coordinates, 
accomplishes a 3-D retinal coordinate representation of the point. The 3-D retinal representation is 
projected-out-in-space at the output stage of the process. The figure also shows that extraretinal 
signals can be combined, by analog xor gates with retinal signals, when the latter are ineffective. 
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out transform which is the inverse of the predicted project-in transform. The distance coordinate of 

the point with its retinal coordinates, accomplish a 3-D retinal coordinate representation of the 

point. The 3-D retinal representation is projected-out-in-space at the output stage of the process. 

The figure also suggest a way by which extraretinal signals can supplement retinal signals when 

the latter are ineffective (for example, during saccades). 

2.3.     DISCUSSION 

In this work we show the feasibility of a scaled solution for the general passive navigation 

problem. Assuming that the retinal flow field is given, the investigation focused on the kinematical 

aspects of passive navigation. The solution obtained requires two perspective views and can be 

applied to the case when the input to the system is comprised of a single point. The first question to 

be discussed is what has made this solution possible? 

The formalization of the problem presented here is different in several respects from those 

found in the common definitions of the optic flow (see e.g. Longuet-Higgins & Prazdny, 1980; 

Simpson, 1993). For example, the common definition position the origin of the moving system at 

the perspective center (nodal point, or pinhole), while the present definition positions it at the 

geometrical center of the eye. As a result, rotation of the eye produces a translation to the pinhole 

and makes the optic flow sensitive to distance due to eye rotations (see e.g. Hadani et ah, 1994). 

Second, in the present case any spatial point gets first its 3-D cartesian notation in the moving 

system and is then projected onto the retina with a one-to-one cartesian to polar transformation that 

preserves the distance as an unknown magnitude. This is different from the use of homogeneous 

coordinates in the common definition. Third, the single metric magnitude that exists in the system - 

the radius of the eyeball is not normalized to 1 as it is considered as an intrinsic scale. We note, 

however, that all of these differences together, or each by itself, could not produce the unique 

solution but turned out to be helpful and even crucial for the final solution. As long as the 

computations remained within the moving system notation, the problem was underconstrained. 
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The solution became unique only when the navigational procedures were applied. The latter 

required one to transform observable and unknown magnitudes into their object centered 

equivalents. Analysis of cause for lack a of unique solution in the eye system notation and the 

existence of a unique solution in object space revealed the following truism of calculus: The 

relations derived in the eye system were based on the differentiation of the position vector of the 

point in space (dP/dt) as is done in Eq. (4). Applying the differentiation operation results in 

dropping out of the constant element in the fixed system leaving only the time varying elements. 

Since there is no time varying aspects of the position of rigid points within the object-centered 

system, the time derivative was justly set to zero. Navigation, on the other hand, is analogous to 

integration. In the case of differential equations, integration restores the constant element and 

requires one to set the initial conditions. In the present case it involved selection of world system 

origin (qo) and 3 orientation angles (KO, XO, (J-O)- We argue that setting the initial conditions in the 

present case did not violate any strict requirement of passive navigation because it did not involve 

the need for external information. In conclusion, navigational considerations were essential to 

produce a solution to the passive navigation problem. The latter involved transforming eye-system 

magnitudes into object centered magnitudes. Projecting-out was aided by preserving the one-to-one 

mapping between object and retinal coordinates. Separation of the rotation center from the pinhole 

allowed the solution for two views. Scaling was obtained by considering the radius of the eyeball 

as an intrinsic metric unit. 

While the implications of the present results to machine vision cannot be overlooked, the 

rest of this section will concentrate on the relevance of our procedures to human vision. First, we 

stress that the deterministic noiseless scheme presented above should be considered just as an ideal 

observer. Second, the motivation behind the development of this ideal observer model was to 

elucidate certain abstract theoretical ideas about the nature of mental representation as explained 

next. 
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One major difficulty for any theory of vision is that we are unaware of the existence of our 

eyes and seem to look through a hole in front of our head (see e.g. van de Grind, 1990, p. 392). 

This idea was nicely illustrated by the "Visual Ego" metaphor that was originally advanced by the 

physicist and psychologist E. Mach in 1906 (1959) and modified by Gibson (1979) as shown in 

fig. 5. The three drawings show different snapshots of Gibson's study as seen by his mind's eye 

while sitting on a comfortable chair. Each snapshot relates to a different heading direction. They 

demonstrate, in the first place, the idea about a window in the head through which the mind's eye 

observes the world. Second, they demonstrate the out-thereness of the perceptual experience, e.g. 

that objects are perceived out there in space and not as being displayed on some internal 2-D neural 

screen (Braunstein, 1976). 

However, the three snapshots may not reflect directly one additional aspect of Mach-Gibson 

illustration. Let us suggest our own interpretation. The reader may note that Gibson's nose is 

shown in all three drawings occupying the same position. Gibson's nose is an object that is 

attached to his head, and in this respect it is an egocentered object. A TV set is shown in all three 

drawings and is one static external object that occupies different positions in Gibson's visual field. 

Now, the question is: which of the two, the TV set or the nose, has time invariant representation in 

Gibson's mind's eye? You can test and answer this question yourself by rotating your head about a 

vertical axis while fixating on a static object and attending to your nose (or any object that is firmly 

attached to your head). You may realize that external static objects are usually perceived as static 

while the nose is perceived as moving. You can also realize that by focusing attention on your nose 

you can perceive the nose as static and the external objects as moving. This "experiment" 

demonstrates that with attentional shifts one can change his/her static frame of reference. 

The subjective impression demonstrated by the "Visual Ego" metaphor indicates that some 

low level unconscious processing is carried-out on the retinal optic flow before it become 

cognitively available. Had the mind's eye seen its retinal image directly, an instable inverted 

distorted  and blurred scene  will be  seen  as  predicted from  geometry  and  optics. Thus, 
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Fig. 5. Gibson's improvisation of the "Visual Ego". The three drawings show different snapshots 
of Gibson's study as seen by his mind's eye while sitting on a comfortable chair. Note that 
Gibson's nose, which is an egocentered object, occupies the same position in the three drawings. 
The TV set is an external object, but occupies different positions. The question is: which of the 
two. the TV set or the nose, has time invariant representation in Gibson's mind's eye? (from 
Gibson. 1979.) 
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computational vision models of structure from motion, and the SPIN theory in particular, may be 

considered as an attempt to bridge the gap between features of the retinal projection and our 

introspective impression. Alternative analyses have not arrived at a unique scaled solution. By 

showing here the feasibility of scaled solution, the theoretical difficulty created by the unsealed 

solutions is removed, thus paving the way to apply the navigational approach as a model for 

human vision as explained next. 

Consider again the situation where a monocular observer is moving relative to a single 

static object. Then, for two successive views a retinal flow is created which is a pure effect of eye 

movements. By assumption, this flow is not visible but is presumably processed to recover 

egodistance and eye motion parameters. The latter magnitudes are then used to calculate the 

position of the object in object-centered coordinates. Our introspective impression indicates that 

only at this stage of processing the object becomes visible. Thus, according to the model, for these 

two successive views, the global slip of the retinal image is effectively filtered-out and the 

differential-motion parallax-component is used to extract the distance of the object. The output of 

this stage is non-inverted representation (coordinates) of the object out-there in space. Thus, the 

navigational approach accounts for visual stability, depth perception and the phenomenal 

experience of out-thereness. As a by-product, it also accounts for reinverting of the retinal image - 

a problem that according to Bridgeman et ah (1994, p. 257) was never solved. Let us assume that 

the representation in the first two views is kept in some spatiotopically mapped storage, and 

consider the third view (or any t+dt view). The same processing is applied now on the information 

in the second and the third views but with one difference. There is no need to redefine the initial 

conditions but just to update the elements of the coordinate transformation. This means that for the 

third view, the perceptual system may use the same frame of reference defined already for the first 

view. Eventually the coordinates of the object's points that are visible in all three views remain time 

invariant preserving position size and shape. In conclusion, the coordinate transformation model 

embedded in the navigational approach may provide an appealing theoretical framework to account 
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for three major aspects of visual perception: visual stability, object constancies and depth through 

motion parallax. 
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APPENDIX A 

List of first and second partial spatial derivatives of the optic flow equations. These are obtained 

after substituting the new variables A-E in Eqs. (7), (8). 
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CHAPTER 3: 
THE EFFECT OF INTER-OCULAR DISTANCE ON REGISTERED DEPTH IN RDS WITH 

DIFFERENT PEDESTAL DISPARITIES 

1. INTRODUCTION 

Stereoscopic depth constancy has been a subject of research and speculations for more then 

a century, yet it is not fully understood. The literature is large and diverse (see Ono and Comerford 

1977; Foley 1991; Durgin et al. 1995, for reviews), and the constancy hypothesis still has 

proponents and opponents indicating that the problem is a difficult one. The present study focuses 

on one narrow aspect of this issue, i.e. the question of how the metric measure of interocular 

distance (IOD) does affect depth appreciation in random dot stereogram (RDS). Geometry of 

binocular vision shows that disparity is scaled by the inverse of the square of the viewing distance. 

This is what is known as the inverse square law (ISL) which also sets the relation between the 

latter magnitudes and depth and IOD (see Appendix). While there are many studies with conflicting 

results on the effects of viewing distance and disparity on perceived depth, little work has been 

done on the effect of IOD. The latter effect can be investigated either by optical modification of the 

natural IOD (Wallach et al. 1963; Wallach and Karsh 1963; Fox and Mauk 1991), or by using 

individual differences in IOD as is done in the present study. The evaluation of the effect of this 

metric measure has theoretical and practical implications. 

As an anthropometric measure the IOD varies considerably among individuals. In adult 

females it ranges from 4.6 cm (5th percentile) to 7.46 cm (95th percentile) (Woodson et al.1992). 

In adult males the corresponding values are 5.7 cm and 6.96 cm. Thus, the total range is over 2.86 

cm which is large enough to produce significant differences in perceived depth. [With the use of 

young observers the lower limit of this range can be extended even further]. In many studies, 

however, the IOD was taken as one of the random variables and eventually it contributed to the 

error variance. In the present study we utilized the IOD as a quasi-independent variable to test 

whether its effect on perceived depth is indeed as predicted by the ISL (see Fig. 1). 
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Figure 1. Geometry of stereopsis in viewing RDS in anaglyph form. The two half images 
are depicted by hatched lines. The figure depicts the perceived depth of the hovering square by 
two observers viewing the same RDS from the same viewing distance. Note that for observer 2, 
the hovering height is smaller and the size of the square is larger. 
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A manifestation of the effect of IOD is obtained with the use of telestereoscope (Wallach et 

al. 1963; Wallach and Karsh 1963; Fisher and Ebenholtz 1986). The simplest telestereoscope is a 

modified Wheatstone stereoscope having two pairs of mirrors (ocular and objective pairs) instead 

of one. This arrangement alters the effective IOD and the optical viewing distance. As a result, a 

rotating real and rigid object appears deformed (Wallach et al. 1963). Several studies investigated 

the effect of adaptation to the deformation and its aftereffect (Wallach et al.1963; Wallach and 

Karsh 1963; Fisher and Ebenholtz 1986). These studies did not involve the quantification of the 

primary effect of the telestereoscope but provided evidence that the device modifies perceived depth 

of real objects. Fox and Mauk (1991) utilized the telestereoscope to modify the effective IOD and 

viewing distance to a stereogram. In a factorial 3x3 within subject design (3 IODs and three 

viewing distances), the effects of the two variables were found to be significant. Their results were 

also in line with the predications of the ISL but with systematic depth underestimations. This type 

of study cannot tell whether individual differences in IOD evoke differences in depth appreciations 

of different observers. In conclusion, there is little but unambiguous evidence that alteration of 

IOD within observers modifies stereoscopic depth for both real and simulated disparity. Thus, 

while individual differences in IOD do not seem to alter depth appreciations of real objects, the 

question of whether the same differences alter depth appreciations in stereograms remains open. 

The psychophysical task utilized in this study involved a moveable probe that had to be 

aligned independently to the same depth of the central square and of the background of a 

stereogram. This task was considered as being inadequate to making measurements which may 

project on the issue of depth constancy because it does not involve the subjective evaluation of 

depth interval. The task is named "disparity matching" (Johnston 1991) because it can be 

performed by equating (annulling) the disparities generated by the probe or the target and does not 

convey information about perceived depth of the probe or the target. Thus, in one of the present 

correlational studies we minimized the possibility of disparity matching, i.e. the possibility that the 

subjects utilized a magnitude other then depth to make their judgments. We also utilize here the 
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notion of registered rather then perceived depth to account better for what was actually measured as 

a dependent variable. Moreover, being aware of the restrictions that this psychophysical method 

has in inferring perceived depth, our conclusions were derived accordingly (see discussion). 

In a preliminary study, the stimulus was a RDS in anaglyph form that was figure 1 in 

Julesz and Miller (1975) paper. The central square had disparity of 5 arcmin (2 mm) which 

calculated to evoke depth between 2.3 and 3.3 cm for IODs of 7.3 and 5.0 cm respectively, at a 

viewing distance of 85 cm. However, a low and statistically insignificant effect of IOD was 

found. We conjectured that this low effect resulted from the relatively low magnitude of the 

disparity that the central square had, and because of the pedestal disparity that this stimulus had. To 

test these possibilities we conducted 4 correlational studies in which the square had higher disparity 

magnitudes and the background had zero, crossed and uncrossed disparities. 

2. METHODS 

Observers were presented RDS in anaglyph form. The stereogram portrayed a central 

square with a crossed disparity and occupied 1/3 of the background field. The experimental setup 

is shown in figure 2. In four correlational experiments, subjects had to align real probes 

superimposed by a beam splitter independently with the depth of the square and the background. 

The viewing distance was at 86 cm and was kept within +/- 0.5 cm error with the use of a chinrest. 

The experimental room was kept dark except for the lumination emanating from the CRT screen 

and from a 40 watt incandescent table lamp that illuminated the probe. Unless otherwise specified, 

the stereogram was comprised of 96x96 dot elements which occupied visual angle of 8.80x8.80. 

Each dot element was comprised of 2x2 red or green pixels of identical luminance. The dot element 

subtended 5.5 arcmin which also defined one disparity unit. 

In the first two correlational studies the anaglyph was presented on a MAC II 21" color 

monitor and the background had zero disparity. In one of these studied the density of the RDS was 

50% of bright dots and double real bars served as probes. In the second, the density was 5% of 
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bright dots and the probe was a single real point light source. The probes were hooked to a single 

12" linear rack and pinion slide with a scale and were superimposed by a beam splitter on the 

observer's field of view. The double probe was comprised of two vertical bars lying on the same 

plane and painted in yellow to have them being seen binocularly through the red green glasses. One 

probe of 2x3 cm was superimposed just below the edge of the central square. The second probe 

2x5 cm was superimposed 0.5° aside the left of the background. Observers had to align the short 

probe to be seen at the same depth of the square and to repeat the same procedure with the long 

probe for the background. The point light source was comprised of a flat polished yellow LED that 

was masked with 1 mm wide aperture. This probe was superimposed roughly at the center of the 

central square in an area free of bright dots.   Observers had to align the depth of the probe to 

RANDOM DOT STEREOGRAM 

HOVERING SQUARE 

BEAM 

SPUTTER 

SLIDING 
VERTICAL 

BAR 

„i RULE 

RED-GREEN 
GLASSES 

Figure 2. The experimental setup. RDS in anaglyph form was presented on a CRT screen. 
Subjects aligned a real probe seen superimposed on the RDS by the beam splitter. The probe was a 
dual vertical bars or a single point light source. 
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coincide with the depth of the square and then to make the same alignment of the probe with the 

background. This type of probe diminished judgments which are based on disparity matching, 

particularly for the background. The initial depth of the probes relative to the targets was varied at 

random. For each target the subjects repeated the task 6 times. Except for a few subjects no 

training trials were required. 

The second two correlational experiments were replications of the former high density 

experiment with stereograms having crossed and uncrossed pedestal disparities. The methods were 

identical except for the following differences: In the uncrossed pedestal experiment, the size of 

image was 11.8°xl 1.8° comprised of 128x128 dot elements. The background had -2 disparity units 

and the square had +6 disparity units relative to the background. Thus the square had +4 disparity 

units relative to the display's surface. In the crossed pedestal experiment the background had +2 

disparity units and the square had +4 disparity units relative to background. Thus, the square had 

totally +6 disparity units relative to the display surface. Moreover, in this experiment the anaglyph 

was presented on a paper print illuminated by a second table lamp. Thus, the display was viewed 

without the intervening effects of the CRT screen. The latter had a thick glass that elongated the 

optical distance and a curvature that made it act as a lens. Moreover, there was some minute 

pedestal disparity produced to the anaglyph because the red and green phosphor elements did not 

coincide on the CRT screen. 

3.  SUBJECTS 

Each experiment was carried out on a large pool of observers who had good stereopsis. 

Stereopsis was tested by the ability to identify simple forms presented with anaglyphs. The ages 

ranged from 5 to 63 years old of different gender and race, with and without corrected vision. The 

interpupillary distance (IPD) of the observers was measured with corneal reflection pupillometer - 

Essilor model C16103 - for convergence at the viewing distance (86 cm) and for parallel 

convergence. The latter measure was taken as the observer's IOD. A total of 163 observers 

participated, about 25% served in more than one experiment. 

46 



4. ANALYSIS 

Data of the 6 alignments made by each subject of registered depth of the square and the 

background were averaged to yield double scores.Then, averaged scores were plotted against IOD 

(and IPD) as scatter plots separately for the background and the square. A logarithmic curve-fit 

was calculated for each set of the data with Macintosh's StatworkTM software. This procedure also 

yields the Pearson correlation coefficient. In addition, the differences between these two 

measurements were computed. Then, the Pearson correlation coefficient was calculated between 

the logarithm of these differences and the logarithm of (IOD + Separation). The latter two 

magnitudes are predicted to have a linear relationship by the ISL (see Appendix A). Similarly, the 

Pearson correlation coefficient r was calculated between the logarithm of the differences and the 

logarithm of (IPD + Separation). The goodness of fit between the theoretical predictions and the 

data was evaluated by calculating the root mean square (RMS) of the data from predictions. 

5. RESULTS 

The registered depths of the square and background obtained in the four experiments 

plotted against IOD are given in figures 3 a-d. The dashed lines show the theoretical predictions. 

The respective Pearson correlation coefficients r are given in table 1 separately for IOD and IPD. 

Figs. 3 a and 3 b show the depth appreciations of 59 and 22 observers made in the high and low 

density experiments respectively. Both figures manifest a strong effect of IOD for the central 

square and no effect of IOD for the background. The values of r computed for the central square 

are -.892 (p < 0.001) for high density stimulus, and -.933 (p < 0.001) for the low density 

stimulus. The respective values for the background are -.141 (n.s.) and -.032 (n.s.). The 

corresponding values for the IPD are slightly lower but all are significant as well (table 1). Figs. 3 

c and 3 d show the depth appreciations of 42 and 40 observers made in the crossed and uncrossed 

pedestal experiments respectively. The two figures manifest a strong effect of IOD for both the 

central square and the background.The values of r computed for the central square are -.760 (p < 
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0.001), and -.800 (p < 0.001) for the crossed and uncrossed pedestal disparity respectively. The 

respective values for the background are -.545 (p < 0.001) and -.596 (p < 0.001). The 

corresponding values of r computed for the IPD are lower for the crossed pedestal then those 

computed for the IOD, but are slightly higher for the uncrossed pedestal (table 1). 

The depth intervals between the square and background calculated by subtracting the 

registered depth of the square from that of the background, plotted against IOD, are given in 

figures 4 a-d. The dashed lines show the theoretical predictions. The respective Pearson correlation 

coefficients r are given in table 2 separately for IOD and IPD. Figs. 4 a and b show the depth 

interval calculated for the high and low density experiments respectively. Figs. 4 c and d show the 

depth interval calculated for the crossed and uncrossed pedestal disparity experiments respectively. 

All four figures show an effect of IOD. The values of r are -.906 (p < 0.001) for high density 

stimulus, and -.953 (p < 0.001) for the low density stimulus. The respective values for crossed 

and uncrossed disparity stimuli are -.522 (p < 0.015) and -.815 (p < 0.001). The corresponding 

values for the IPD are slightly lower in two of the four experiments, almost even for the high 

density stimulus and lower for the crossed disparity stimulus (table 2). 

Square 

Experiment n r(iod) P r(ipd) P 

High density 
Low density 
crossed 
uncrossed 

59 
22 
40 
42 

-.892 
-.933 
-.760 
-.800 

.001 

.001 
.001 
.001 

Background 

-.888 
-.866 
-.715 
-.805 

.001 

.001 

.001 

.001 

Experiment n r(iod) P r(ipd) P 

High density 
Low density 
crossed 
uncrossed 

59 
22 
40 
42 

-.141 
-.032 
-.545 
-.596 

n.s. 
n.s. 
.001 
.001 

-.126 
-.071 
-.467 
-.616 

n.s. 
n.s. 
.005 
.001 

Table 1. The Pearson correlation coefficients r computed for the four experiments between scores 
of registered depths of background and square against observers IOD and IPD. n. s. stands for not 
significant. 
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Registered depth plotted 
against observers's IOD. 
Lower dashed line is the 
theoretical prediction. Upper 
dashed line at 86 cm indicates 
viewing distance, or distance 
to the display plane 

a) Results of 59 subjects in 
the high density experiment, r 
= -.141 for background 
(upper curve), and r = -.892 
for square (lower curve). 

b) Results of 22 subjects in 
low density experiment, r =- 
.032 for background (upper 
curve) and r = -.933 for 
square (lower curve). 
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c) Results of 40 subjects in 
the crossed pedestal 
experiment, r = -545 for 
background (upper curve), 
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Figure 4 a, b. 

Registered depth interval 
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a) Results of 59 subjects in 
the high density experiment 
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b) Results of 22 subjects in 
low density experiment 
r = -.953. 
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Registered depth interval 
plotted against observers's 
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theoretical prediction. 

c) Results of 40 subjects in 
the crossed pedestal 
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Registered depth interval 

Experiment n r(iod) p r(ipd) 

High density 59 -.906 .001 -.908 .001 
Low density 22 -.953 .001 -.938 .001 
crossed 40 -.522 .001 -.544 .001 
uncrossed 42 -.815 .001 -.769 .001 

Table 2. The Pearson correlation coefficients r computed for the four experiments between scores 
of log (R) and log (I + S) when R is the registered depth interval and I is IOD or IPD. 

Data for all experiments was compared to the theoretical predictions calculated from the 

ISL. The theoretical predictions are depicted in the scatter plots with dashed lines. The closest 

match between theoretical and empirical data was obtained in zero pedestal disparity experiments. 

Of these two stimuli the best match is shown for the low density case (figs.'3b and^b). The 

goodness of fit in all experiments is given in table 3 in cm by calculating the RMS values of the 

data from the theoretical curve. The disparities between the theoretical and empirical curves is 

larger in the pedestal disparity experiments as compared to those obtained in the no pedestal 

disparity experiments. 

Experiment RMS RMS RMS 
square background differences 

High density .588 .248 .211 
Low density .448 .281 .226 
crossed .322 .472 .668 
uncrossed .636 .878 1.627 

Table 3 Root mean square in cm of empirical data from the theoretical predictions for the 4 
experiments measures in cm the goodness of fit. The best fit is obtained for the low density 
stimulus. 
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6. DISCUSSION 

In general, our data show a clear effect of esoteric IOD on the registered depth evoked by 

simulated disparity. In the first place, this effect suggests that different observers viewing the same 

stereogram from the same viewing distance would experience quantitatively different depths. These 

quantitative differences are indicated by trends in the measured registered depth. Observers with 

smaller IODs had seen the square at closer egodistance then observers with larger IODs ( Fig. 1 

and figs. 3 a and 3b). This effect is not a negligible one, for example, the depth interval in the low 

density experiment registered by observer with IOD of 7.3 cm was 7.7 cm while observer with the 

lowest IOD registered an interval of 10.6 cm (Fig. 4b). Moreover, the data shows: a) High 

correlations of up to -.953 between the registered depth of the central square and IOD. b) High 

correlations of up to -933 for the depth interval (as calculated by the subtracting the magnitudes of 

two independent measurements), and IOD. c) The fit of data with the theoretical predictions made 

by the ISL given in terms of RMS which was as low as 0.211 mm, and without the need of using 

a free parameter (Table 3 and dashed lines in fig. 4a). Thus, the present data provides additional 

empirical support for ISL which makes it valid to predict individual differences in registered depth. 

It is interesting to note that when comparing between the fits of the two pedestal experiments to 

their theoretical predictions, the fit of the crossed pedestal data was better in terms of RMS. This is 

probably due to the fact that the crossed pedestal stereogram was presented on a paper print, thus 

removing some of the biases in depth estimates introduced by the CRT screen. 

Indeed, the fit of data with the ISL depended on stimulus conditions. The best fit with 

predictions was obtained in the high and low density experiments where the background had zero 

disparity. Zero disparity for the background also means that its depth is not simulated but coincides 

with the depth of the display's surface, or the horopter. This also means that matching between a 

real probe and between the background is identical to matching depth between two real objects. 

That is presumably why in this case there was no effect of IOD for the background (top of figs. 3a 

and 3b) and the correlations were lower and insignificant (table 1). On the other hand, when the 
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background had a crossed (uncrossed) disparity, the registered depth measurements indicated that 

it was perceived in front of (behind) the display plane. This is presumably because disparity of the 

background was taken by the observer's stereoscopic mechanism as a simulated disparity and the 

effect of the IOD is shown also on its registered depth (figs. 3c and 3d). In conclusion, our results 

suggest that three different surfaces have to be considered in viewing a stereogram: The surface of 

the figure, the surface of background, and the surface of the display. The data also suggest that 

under all the present stimulus conditions, the surface of the display served as the horopter. Since 

the ISL tacitly assumes depth constancy, then our data suggest that with zero pedestal disparity for 

the background depth is veridical, and that veridicality is somewhat impaired when the background 

has pedestal disparity. It is also interesting to note that in most cases, the IOD gave better overall 

predictions than IPD. This finding is mostly manifested in the zero pedestal experiment and 

deserves further investigation. 

The results of the experiments with crossed and uncrossed pedestal solved what we called 

the pedestal dilemma, e.g. why in the preliminary study a low and insignificant correlation 

between IOD and depth interval was found. The pedestal dilemma is explained by the increased 

variance in depth matching for stereogram with pedestal disparity. Since the measurements for the 

square and the background were independent the variance of the differences is added and masked 

the effect of IOD. Then higher magnitudes of disparities of the square were needed for the effect to 

be revealed. A different question is raised by the data as for the possible cause(s) of the increased 

variance in the pedestal experiments. Even though this question was not addressed here, it is likely 

that it was caused by: a) The increased workload imposed by stereograms with pedestal disparity 

on the convergence and the accommodation mechanisms (Diner and Fender 1993). b) Visual 

deficiencies that observers may have that determined the strength of their stereopsis. If we take the 

ISL as a norm for good stereopsis, and the task of matching depth between real and simulated 

disparity as an accurate and sensitive one, then the question of how different visual deficiencies are 

reflected in the performance of this task is interesting and deserves further research. 
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It has been justly argued that results based on the task of disparity matching does not 

convey information about perceived depth of the probe or the target (Johnston 1991). Against this 

criticism, we argue first, that the task does tell that the two matched stimuli occupy the same 

location in space, or what we call here the registered depth. The differences between the two 

independent measurements, however, was not assessed directly by the subjects and may not 

provide meaningful information about the perceived depth interval but only if the observers did not 

change their horopter in switching between the two parts of the task. Theoretically, changing the 

horopter modifies the sign and the magnitude of the percieved depth. The good match, however, 

between the theoretical predictions and the registered depth interval, particularly in the no pedestal 

disparity experiments, suggests that the observers utilized the display surface as the horopter for 

both measurements (see below). Third, even though one may have a metric scale of depth, direct 

assessment of depth interval may suffer from other problems, for example, difficulties in mentally 

transforming 3-D perceptions into 2-D side view responses (Durgin et al. 1995). In contrast, the 

present method gives consistent results, and is easily communicable to a large population of 

observers including young children. Fourth, in some stereoscopic depth constancy studies, 

disparity matching was found to be an appropriate task for inferring veridicality of depth perception 

(Patterson et al. 1992). In other study it was found to be consistent with alternative measures of 

depth interval but was more accurate (Cormack 1984). In addition, the task has the benefits of the 

high resolution of the stereoscopic mechanism that falls in the hyperacuity range (2-5 arcsec). 

Finally, the criticism implies that observers may annul a magnitude other than perceived depth in 

their judgments. This possibility was diminished in the low density experiment where the probe 

was a single central point-light-source and was utilized for depth matching with both the square 

and the background. 

For several reasons it is not obvious that the ISL is an accurate model for stereoscopic 

depth perception, even for real objects. Thus, any empirical support for law is theoretically 

important. The ISL is derived on the basis of strict Euclidean geometry premises and on the 
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principle of triangulation. In the derivation of the law, the visual axes of the two eyes are assumed 

to fixate steadily and intersect at a point. The fixation point and the two nodal points of the eyes 

create the Veith-Muller circle which defines the horopter, or the reference surface of zero disparity. 

However, horizontal phoria will cause the optical axes to intersect at a point different from the 

fixation target and the slightest vertical phoria would rule out any intersection. Furthermore, in 

normal vision the visual axes of the eyes are not steadily maintained, even when the eyes fixate on 

a steady target, because there are involuntary movements of fixation (Dichburn 1973). some of 

which may not binocularly synchronized (see Alpern 1972). Julesz and Fender (1967) have shown 

that under stabilized image conditions the two overlapping and fused half images can be pulled 

apart horizontally as much as 2° without the loss of fusion and/or stereopsis. Replicating this 

experiment under normal viewing conditions, Hyson et al. (1983) have shown that permanent 

fluctuations of vergence angle occur with no loss of fusion or stereopsis for vergence error of up to 

5°. These findings indicte that convergence during fixation is not time invariant quantity and had 

disparity been scaled by convergence angle, as suggested by Cumming et al. (1991), fluctuations 

in perceived depth of fixated object are to be expected. These findings also suggest that a more 

advanced dynamic computational model of stereopsis is required in which the IOD, being roughly 

a time invariant base of the triangle, is the scaling magnitude. Moreover, even the static definition 

of the horopter assumes that there is, about any such circle, a range of disparities that can be 

resolved without the loss of single vision. This automatically produces for any given horopter 

certain thickness in the z dimension. The thickness of any horopter depends on a range of 

disparities that determine the region of single vision called the Panum fusional area (about 10 

arcmin for brief exposure and 2° for longer exposure). Thus, the depth intervals calculated here 

from the difference of the two registered depth measurements may be considered as perceived 

depth intervals only if the two measurements fall within the same horopter. 

Recent works on stereoscopic depth constancy which utilized real objects have shown good 

depth constancy (Durgin et al. 1995; Frisby et al. 1996). On the other hand, works utilizing 
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stereograms, gave conflicting results. For example, Johnston (1991) and Tittle et al. (1995) 

reported on systematic distortions in perceived shape of a semi-circular cylinder, and Norman et al. 

(1996) reported on a failure of depth constancy in the assessments stereoscopic oblique bars. In 

contrast, Durgin et al. (1995) reported on good depth constancy also for a stereoscopic cones. It is 

possible that at least some of the systematic distortions of shape reported by Johnston (1991) and 

Tittle et al. (1995) were caused by the use of mirrors' telestereoscope that eventually modified the 

natural IOD. But the effect was not taken into account in the calculations of depth (M. Landy, 

personal communication 1996). On the other hand the telestereoscope utilized by Durgin et al. 

(1995) was comprised of two prisms inclined in 45° which were placed vertically and may seem to 

unchange the natural IOD. Thus, this configuration may account for the reported depth constancy 

obtained in this study. In conclusion, our findings suggest that the natural or modified IOD should 

be measured and taken into account in psychophysical studies of stereoscopic depth constancy. 

There is a wide consensus in vision that disparity is an ambiguous cue for depth because 

the same magnitude of disparity may evoke different depths depending on the viewing distance. 

The question is how the viewing distance is extracted stereoscopically? The ambiguity of disparity 

as a cue for depth stems from a fundamental computational problem associated with the horopter 

model which suggests that the viewing distance cannot be uniquely extracted by a mechanism that 

measures only angles. Therefore, the stereoscopic mechanism is considered as providing only 

relative depth and this feature cannot account for perceptual constancy. On the other hand, Mayhew 

and Longuet-Higgins (1982) suggested that vertical disparity enables the system to calculate 

absolute depth from retinal information. This conjecture is disputable and had received only a weak 

empirical support. Recently, Rogers and Bradshaw (1993) have shown that vertical disparity is an 

effective cue but only when the visual field is large and subtends 70°. The use of stereograms 

subtending 30°, however, did not show an effect of vertical disparity (Cumming et al. 1991). In 

our view, there is no computational need to resort to vertical disparity for extracting absolute depth. 

In chapter 2 of this report, a model is presented that shows that, in principle, absolute depth can be 
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extracted from two monocular views of a single eye. This model utilizes the time domain for the 

computations. Since depth from motion problem is isomorphous with depth from stereopsis, the 

model in chapter 2 can be elaborated to account for binocular vision too. In the elaborated model 

the IOD would serve as an intrinsic scale as suggested by the SPIN theory (Hadani et al.1980; 

Hadani 1991; Hadani 1994) similar to the radius of the eyeball that serves as an intrinsic scale for 

monocular vision. Such extended model has the benefit of allowing asynchronous eye movements 

(see also Hadani 1980), and may solve for the inadequacies of the classical horopter model 

mentioned above. 

It may be questionable whether our findings have any theoretical significance regarding the 

plausibility of veridical depth perception in humans, but they certainly have practical implications. 

In the first place, they imply that depth in stereoscopic displays, like 3-D movies, will be scaled 

differently by different observers even if their viewing distance from the display is identical. 

Second, they are related to head (helmet) mounted displays used to fly aircraft (Patterson et al. 

1992). These displays intend to provide the pilot a field of view under low visibility conditions 

(night vision). In these displays, the images are picked up by two cameras. If one takes the nodal 

points of the cameras' objective-lens as the vantage points, then the distance between the two nodal 

points is analogous to the natural IOD. And if this distance is larger than the operators' IOD, then 

hyperstereo information is created. Our findings suggest that in order to provide to users veridical 

depth, the distance between the cameras should be customized. [Another requirement, that falls 

beyond the scope of this work, is that the cameras' nodal points should coincide effectively with 

the natural nodal points (Hadani 1991)]. The same arguments apply to virtual reality displays that 

are becoming popular and widespread. In this case a synthetic environment is computer generated 

in a method called volumetric ray-tracing. A 3-D scene is embedded in a volume filled with texture 

elements. The back plane of the volume is the image plane. To generate each eye's image, a line is 

traced from the eye's view through the surface of the scene to an image pixel. Many of the virtual 

reality systems combine visual and motor (kinesthetic) displays that permit telerobotic manipulation 
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(Diner and Fender 1993). Thus in order to make the visual input compatible with the kinesthetic 

and reduce workload, the volumetric ray-tracing procedure should consider also the particular 

operators' IOD. 
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Appendix A 

In deriving the ISL, a distinction is made between viewing a scene comprised of real objects and 

stereograms that emulate 3-D objects. The considerations are somewhat different for the two cases 

though the underlying geometry is fundamentally the same (Cormack and Fox 1985), and is based 

on triangulation. For two real points with differential depth R, and one of which is fixated, the ISL 

had the following equation (Cormack 1984): 

(1) R = (.5I(TAN(ATN(D/.5I) + .5d))) - D, 

where I is the IPD, d is the retinal disparity in radians, and D is the viewing distance. For crossed 

disparity, d and R are negative. When the depth is small relative to the fixation, Equation (1) can be 

approximated by the equation (Graham 1965): 

DZ*d 
(2) R =  

I 

Note that when the disparity is solved in this equation, it is scaled by the inverse of the viewing 

distance. This is where the ISL had received its name from. In the case of fusing the two half 

images of a stereogram, the background is usually taken as the reference plane (or the viewing 

distance). One point on the reference plane is fixated and determines the convergence angle. The 

simulated disparity is taken as the linear separation of a subfigure between the two half images. 

Thus, the ISL is given by the following equation (Cormack and Fox 1985): 

D*S 
(3) R =  

I-S    , 

where S is the separation in cm and is negative for crossed disparity. In this context, the disparity 

in radian is S/D. Note that the same separation with different signs give different predictions of 

depth interval. Equation (3) was utilized for the theoretical predictions for the data obtained in this 

work. 

64 



APPENDIX A: 
THE SPIN THEORY- A NAVIGATIONAL APPROACH TO SPACE PERCEPTION 

1. INTRODUCTION 

Visual space perception is a crucial feature for the survival of the organism. The theoretical 

questions that are addressed here are: How are the 2-D dynamic retinal images transformed into 

stable 3-D percepts of the object? Is our representation given in veridical or relative terms? and 

How can the objects' constancies be preserved? While theoreticians differ on these basic questions, 

the reality is that no integrating theory is widely accepted. This paper is mainly theoretical and 

elaborates on the Space Perception In Navigation (SPIN) theory, a navigational approach to space 

perception. The theory accounts for veridical depth perception and the preservation of objects' 

constancies (1-3), by combining visual with ocular and vestibular signals to create a stable 

representation across eye and head movements. The theory claims that during fixations the retinal 

signals are sufficient to reconstruct the egodistance and motion parameters of the eyes in space (1, 

3), which enables object-centered representation (or passive navigation). Moreover, it also takes 

into account the Listing and Donders' laws, and the Vestibulo-Ocular-Reflex (VOR) to aid the 

navigational computations, < and complement them when retinal signals are absent (active 

navigation). 

2. VISUAL STABILITY AS TREATED BY THREE MAIN STREAMS IN PERCEPTION AND 

AUTOKTNESIS 

The visual world as described by Gibson (4-6) has the property of being stable and 

unbounded. This experience, according to Gibson, is what a theory of perception must explain (5). 

Attempts to address the perceptual stability can be classified into three main categories: 

a) traditional inferential 

b) Gibsonian direct perception 

c) computational 



The Inferential view regards visual stability as a large problem that is solved by several 

subsystems and with the aid of a great number of cues (see, e.g. 7). It states that we may perceive 

static environment as static depending on the outcome of the following basic mechanisms: 1. the 

elimination mechanism; 2. the translation mechanism (the take-into-account explanation); 3. the 

evaluation mechanism; 4. the calibration mechanism. For details about the explanations leading to 

visual stability, the reader may consult Gregory (8), Wertheim (9) or Bridgeman et al. (10). A 

major drawback in all inferential approaches is that they concentrate on egocentric representation 

and neither considers image instability due to head movements nor the differential retinal slips due 

to distance of objects from the eye. The direct perception approach, on the other hand, does 

consider these issues but does not provide a satisfactory formal account. 

Wertheim (9) diagnosed many of these theoretical difficulties. He has advanced a model 

that assumes the existence of a reference signal which gets inputs from visual, ocular, and 

vestibular outputs. In my view, Wertheim considered all the relevant components for human 

navigation. The main problem with his model is that it is physically unsubstantiated. This is 

because visual stability, egomotion, and object's motion cannot be accounted for without the 

consideration of egodistance and structure of visual objects. These elements are missing in 

Wertheim's model. 

In computational vision the problem of navigation of dynamic observer is analyzed by 

considering egodistance and the 6 motion parameters of the eye in space. In theory, absolute ego 

distances can be determined from the image data if the observer's motion parameters are known (1, 

11). The question is whether the motion parameters and egodistances can be uniquely extracted 

from the retinal images without the aid of extraretinal signals. The consensus is that the answer to 

this question is negative (12). The most rigorous solution was advanced by Tsai and Huang (13) 

who show that 7 points and two views are required to recover the distance and the motion 

parameters (up to a scalar in the translation vector). Thus, all models in computational vision yield 

relative depth perception because their solution is up to a scalar. The problem is termed as the 



indeterminate scale problem, and has direct implications to visual perception in general, and to 

Wertheim's model in particular. 

To pinpoint our critique of models of the computational approach, we ask: what kind of 

perceptual experience would be predicted by the models when the input of the system is below the 

minimal conditions required for a solution, e.g. when the input to the system is a single point 

which creates the autokinesis phenomenon. The answer is that no solution will be obtained and the 

system will fail to stabilize the point. From a perceptual standpoint, the appearance of the point 

would be jittery, reflecting the unsteadiness of the eye. 

Important observations related to autokinesis are that the effect can be obtained for more 

then one luminous point (14). In the case of two separated points, the torsional fluctuations are 

small even in the presence of large positional errors. Also, only small fluctuations in their angular 

separation are observed, which means that their rigidity is fairly preserved. 

Thus the autokinetic phenomenon shows that the capacity of the human visual system is far 

beyond what was suggested by the most rigorous computational models. These models do not 

consider extraretinal signals. However, when extraretinal signals are considered, then on one 

hand, the indeterminate scale problem does not hold in normal vision because these signals may 

provide the missing information to the computational scheme. On the other hand, they cannot fully 

explain visual stability because the noise in these signals generates permanent slips of the retinal 

image which should be perceivable (15). Furthermore, retinal slips due to head movements can 

only partially be compensated because the vestibular system is insensitive to linear motion (see e.g. 

16). Thus, one must conclude that a considerable amount of image instability should normally exist 

had visual stability been carried out on the basis of extraretinal information. 

3. THE SPIN THEORY 

The above drawbacks are settled within the SPIN theory as it regards space perception 

navigational process in which the organism continuously builds a stable representation of hi 

as a 

s 



environment. This representation is given in terms of object's (exocentric) coordinates rather than 

retinal or head (egocentric) coordinates. 

The fundamentals of the exocentric representation are illustrated in fig. la. The figure 

depicts the systems of coordinates that take part in the navigational computations. One is 

time-invariant system which is attached to the physical objects, with coordinates (X,Y,Z). The 

others include three dynamic systems of coordinates attached to the observer. One is head system 

and centered at the midpoint between the two vestibular organs, with coordinates (xh, yh, zh). The 

other two are attached to the left and right eyes respectively, and centered at their corresponding 

geometrical centers, with coordinates (xr, yr, zr; Xl, ylt Zl) respectively.  The equal distances 

between the origin of the head system and the corresponding centers of the two eyes (or the vector 

f) are considered here as having an effectively fixed length and assumed to be known to the 

processing mechanism. So are the radii of the eyeballs. In the model, these magnitudes are taken 

as a metric units, that serve to scale the representation. The eyes are approximated as spheres 

whose centers coincide with the corresponding eyes' centers as shown in fig. lb.  The optical 

apparatus of the eyes is approximated as pinholes which coincide with the corresponding reduced 

nodal points. The later points are taken as the perspective centers of the eyes. 

Now consider that the following relations exist: 

coordinate system = frame of reference 

object's point = event 

coordinates = representation 

Then, linear algebra tells us that if the eye system has 3-D representation of objects' point 

and if the relative position between the eye and world coordinate systems is known, then the 

observer can calculate a representation of objects in the object frame of reference. This statement is 

equivalent to saying that the human perceiver can, in principle, builds in his "mind's eye" a 3-D 

image, or phantom, of the objects, and that the reconstructed image (in normal uncorrected vision) 

usually coincides (in numerical values) with the real location in space of the objects. This is the 
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Surface of 
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projection 

Figure la, lb 

The system of coordinates in the SPIN theory. 
a: (X;Y;Z) is a system attached to the objects; (xh;yh;zh) is the head system; (xr;yr;zr) and 

(xi;yi;zi) are the system of coordinates attached to the eyeballs. I is the Inter Ocular Distance and f 
is the vector connecting between the head system and the eye system origins 
♦u     A -b: definition of retinal coordinates of image points in the eye systems of coordinates - C is 
the radius of the eyeball. (From Hadani I, 1991.) w*»uindo»   ^ is 



crux of the stability problem and the question is how the observer can attain egodistances and the 

knowledge of his relative position to object's world. As indicated earlier, this knowledge is derived 

either from the retinal information, or from extraretinal information. 

A flow chart of the theory is given in fig. 2. The passive and active navigation parts are 

separated by a dashed line. The left part of the figure shows stages of the project-onto-the-retina 

and project-out-in-space of a stationary visual point. These involve the transformation of the 

point's spatial coordinates into retinal coordinates, followed by a stage of retinal motion extraction. 

The motion field is then processed to calculate the movement parameters of the eye in space and the 

egodistances. The motion parameters of the eye are then processed to calculate the project-out 

transform which is the inverse of the calculated project-in transform. The distance coordinate of the 

point with its retinal coordinates, accomplishes a 3-D retinal coordinate representation of the point. 

The 3-D retinal representation is projected-out-in-space at the output stage of the process. A 

detailed formal account of the project-in project-out stages and metric egodistance extraction, for an 

eye in pure rotations, is given in ref. 3. 

The right part of the scheme in fig. 2 describes the stages which are involved in the 

processing of the extraretinal signals. The angular velocity of the eye relative to the head, taken 

from the oculomotor mechanism, are processed to give the angular position of the eye relative to 

the head. This stage is bound to the Donders' and Listing's laws. In parallel to the processing of 

eye-head movements, the head angular position in space is processed from vestibular signals. 

These serve to calculate the position of the eye in space. The linear displacements of the eye is 

calculated by double integration of the head linear acceleration, added with additional components 

caused by head rotations, because the eye and head system's origins are separated by the vector f. 

This stage of processing also has to consider the VOR. On the basis of our kinematical analysis, it 

is assumed that laws of eye movement and the VOR can assist the passive navigation and to 

veridical depth perception as will be suggested below. 



The retinal and extraretinal signals are combined in the chart with two hypothetical analog 

xors units to give the value of the inverse transformation matrix at project-out-in-space stage. At 

present it is not clear exactly what are the rules by which these different sources of information are 

combined. 

Vision research has revealed that the eye is basically an instrument for analyzing changes in 

light flux over time.  Roughly speaking, without continuous changes in the light flux that is 

striking the receptors, there would be no neural response and the retinal image will disappear 

within 2-3 seconds (17). In accordance with this "limitation," human eyes are normally in 

continuous motion due to a variety of eye movements in their orbits, and due to head movements in 

space. These movements cause the retinal image to sweep and jump across the receptors, and to 

generate the desired local temporal changes of luminosity. Yet these movements are not perceived 

by the observer, and stationary scenes are perceived as such despite their retinal shifts. 

Furthermore, the magnitude of retinal displacement of an individual image point has a component 

which is determined by its distance from the eye, and is known as motion parallax. 

The SPIN theory shows how the processing mechanism is assumed to handle this 

complicated situation for extended time periods. At t=t0 the head system of coordinates coincides 

with the fixcd-in-space system and the two eye-systems are in a primary position. Each point of 

the visible physical object is projected-onto-the-retina and gets a two-dimensional retinal label 

(coordinates) given in terms of the eye's system. Now suppose that at t=t, and (20 msec later, 

say) the eye had a small rotation in the orbit and at the same time the head had a small 

displacement. As a result of the compound movement, the point is displaced on the retina and gets 

a new local label.  Knowing the angular velocity ofthat point, the following unknowns are 

estimated: a) the distance ofthat point, b) the parameters describing the momentary orientation of 

the eye-space systems, and c) the parameters describing the eye system translation which is also 

the head system translation added with the cross product of the head rotation and the vector f 



SPACE PERCEPTION IN NAVIGATION 

PASSIVE ACTIVE 

Fig. 2. A flow chart of the SPIN theory. For details see text. 



(information about head rotation is taken from the vestibular system). The 3-D time-variant eye's 

coordinates (retinal location and estimated distance) are now transformed into 3-D time-invariant 

space coordinates by applying the inverse transformation. Integrating in time the estimated motion 

parameters enables the assumed processing mechanism to project the points out in space to its 

presumed veridical position. The processing mechanism will restart, or switch to a new frame of 

reference, when the observer attends another object which serves as reference, or blinks, or 

drastically changes his environment. 

In cases of large and rapid eye movements (saccade), as well as head accelerations where 

retinal information is inhibited or smeared, the processing mechanism is assumed to utilize 

extraretinal signals to update the process of time-invariant representation. 

The more general case is when there are several objects in the field of view and some of 

them are moving, the processing mechanism then selects one object as the spatial frame of 

reference. If that object is static, then the computations of the object-observer relations are correct 

and so are the movement trajectories of the other objects. However, when the selected object of 

reference happens to be one of the moving objects, then the calculated movement parameters of the 

observer would be biased (self motion may be wrongly inferred), and the stationary objects would 

be taken as moving. 

A computer simulation of the project-in project-out process as applied to pure eye rotations 

(fixed head) is given in ref. 3. This simulation also emulated the Listing and Donders' Laws of eye 

movements, and autokinesis, and enabled some interesting predictions. First, it showed the 

autokinetic effect cannot be accounted for by noise in the retinal signals because such noise created 

large fluctuations of the perceived egodistance (including negative values) and relatively small 

positional drift. This implies that the retinal signals have to be more accurate than extraretinal 

signals. Second, autokinesis was best emulated by filtered white noise which emulates one that 

penetrate directly from ocular signals and affects the project-out process (fig. 3a). That negative 

distance values can be perceived has been reported by Skavenski, Haddad and Steinman (18) but 



only when the eyeball was equipped with a molded contact lens, and when the lens was pulled 

sideways. This observation is in line with our conclusion that extraretinal signals that accumulate 

large positional errors may be the main cause of autokinesis. Third, the meaning of Listing and 

Donders' laws is that the ocular control mechanism probably utilizes only two independent 

parameters of rotation (19) when torsion is a function of the other two parameters. Under this 

condition the simulation has shown that for two separate points, the rigidity and no torsion are in 

agreement with psychophysical observations. When three independent rotational parameters were 

used in the simulation, large torsional drift in the autokinesis was obtained (not shown). Thus the 

lack of observed large torsional drift in autokinesis is attributed to the laws of eye movement. 

Fourth, the flow equations (3) indicated that the structure of retinal motion field is dictated by these 

laws. This was confirmed by the simulation as shown in fig. 3b. The figure depicts a polarized 

excursion of retinal projection of any visual point generated by an eye that obeys the Listing and 

Donders' laws. The pole of this excursion is the primary position. Additional aspects of 

extraretinal signals and their implications to the SPIN theory are given next. 

4. EXTRARETINAL SIGNALS 

4.1      Number of Ocular Signals 

The eye movements receive their commands from brain centers that have the signal about 

the position and motion of the eyes relative to the head. Classical eye movement measurements led 

to the suggestions that there are five, or more, independent systems of ocular control. These 

suggestions are supposed to lead to a considerable amount of complication in any scheme that tries 

to elucidate the combination of extraretinal with retinal signals. However, recently Steinman et al. 

(20) argued that actually only two subsystems were diagnosed in their studies. One subsystem is a 

fast saccadic system and the other is a slower, smooth pursuit. These are used to fixate and track, 

respectively, a central representation of objects located in three-dimensional space. It is argued that 

this suggestion simplifies the hypothesized combination of retinal and extraretinal signals as 

suggested by the SPIN theory. 
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Fig. 3. (a) Autokinesis is simulated with 
0.5% colored noise penetrating from 
extraretinal signals. The plot depicts the 
excursion of a point in 100,000 sampling 
units of 20 msec. 

(b) Retinal excursion of a single point due to 
tremor of the eye. The magnified excursion of the 
point in the first 50 consecutive steps is shown in 
a circular window representing 16.8 arcmin in 
diameter. The polarization of the excursion steps 
is due to the implementation of the Listing and 
Donders' laws in the definition of the eye-head 
transformation matrix. The noise level is 0 01% 
(From Hadani I, Ishai G, Frisch HL, Kononov 
A, 1994.) 

4.2      The Laws of Eye Movements and Position Constancy 

As mentioned above, motion trajectories of the eyes in their sockets are governed by the 

Listing and Donders' laws. The effect of the laws was used to establish the fact that the retinal 

image of any static object, for any given position of the head and fixation of the eye, falls upon 

identical retinal points. Thus, the laws became the basis for the constancy theory of localization (cf 

21), more specifically, to the oldstanding Lotze's theory of visual local sign. This theory assumed 
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that if the orientation of the head and the eye are known, then the position of a perceived object in 

relation to the vertical and horizontal of the visual field is determined by the retinal points 

simulated. Indeed, like all explanations in the inferential approach, what Lotze's theory is missing 

is the consideration of the head movements and egodistance. Then, if the observer fixates the same 

object twice when his head is translated between the first and second fixation, the object would not 

procure exactly the same shape and position on the retina. 

There are increasing pieces of evidence that Donders' and Listing's laws are not due to 

orbital geometry or extraocular muscle mechanics. For example, they fail during sleep. Also VOR 

measurements in monkeys suggest that the laws prevail even during head movements, but with 

adjustments that are required for fixating a stationary point (22). Psychophysical measurements of 

the inclination of a vertical afterimage when the eye changes direction are in line, but deviate from 

those predicted by Listing's law (23). If these laws are not due to plant mechanics, then their 

existence raises the question: what kind of function do these laws fulfill? Some conjectures 

derived from our theoretical analysis relate them to the VOR as will be suggested below, but in 

general the answer to this question remains unclear. 

4.3      Vestibular Signals 

The vestibular organ does not inform us about the state of the external world (16), e.g. 

whether it is stationary or moving; rather it gives us information about the change of movement of 

our head relative to the inertial space. The response induced by the vestibular system typically 

occurs automatically, without any need of conscious control. Neurophysiological data have shown 

that interactions of inputs from different sensory system including visual, occur in neurons lying 

only one synapse from the central vestibular end organ (see e.g. 24). Also, the oculomotor output 

is intimately linked to the vestibular output. Thus, it is argued by Henn et al. (24) that if 

information from different sensory systems converge, the different inputs must have the same 

dimension for coding to be compatible. Similarly, compatible sensory coding is required for 
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appropriate motor responses that are based on multiple sensory inputs. As shown in sec. 2, the 

SPIN theory takes into account many of these aspects and combines them into a unified formal 

framework. One of the derivations of the theory is that if we visually select a stationary object as 

our frame of reference, then the calculated motion parameters of eye in space would be veridical 

and in line with those sensed by the vestibular ones because the latter are given in terms of the 

inertial space. However, when we select a moving object as our space (as in the case of vection) 

the calculations of our motion parameters will be correct with respect to the moving object but not 

with respect to the inertial space. Thus a conflict between retinal and extraretinal information is 

expected and presumably causes motion sickness. 

4.4      Suggested Functions for VOR and Extraretinal Signals 

Traditionally, the VOR is described as a distinct, phylogenetically old oculomotor 

subsystem, which serves to stabilize the gaze direction. It is supposed to act as a stereotyped reflex 

with definite input-output relations. On the basis of eye movement measurements in the dark, 

Collewijn (25) argued that the traditional view of the VOR is not realistic. He suggests a more 

fruitful hypothesis that the vestibular signals are just one of many inputs to a spatial localization 

process, which computes the relative position (and motion) between the subject and the target of 

his choice. In light of the later conjecture and Steinman et al. (20) suggestion about the existence of 

two subsystems of ocular control, and on the basis of our formal analysis of the passive navigation 

problem, I would like to suggest the functions of the VOR and extraretinal signals as follows: 

a) The traditional function of stabilizing the gaze during head movements to allow 

fixations. This function may contribute to the navigational computations in several respects: 1) 

Fixating one of the visual points keeps the angle between the eye's momentary rotation and 

translation vectors perpendicular with respect to each other (which turns the velocity vector to lie in 

a plane perpendicular to the rotation vector. It reduces the number of degrees of freedom of the eye 

from 6 to 3 and simplifies the navigational computations). 2) Fixating one point also keeps the 
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retinal slips of other points small, and within range so that these slips may be captured by the (low 

level and local) retinal motion extraction mechanism. 3) In the general case of an eye moving in 6 

independent degrees of freedom, the vestibular and ocular systems together may provide the 

computational mechanism information about the angle between the rotation and velocity vectors of 

the eye in space. Our analysis have shown that this is a minimal bit of information which is 

sufficient to solve the indeterminate scale problem. 

b) To supply the navigational mechanism with the component of the head-motion-space in 

order to fill in the "dead" visual intervals created during saccades. This function enables the 

phenomenological continuity of vision across saccades and help to preserve the objects' 

constancies. 

Crawford and Vilis (22) rotated monkeys sinusoidally at approximately .5 Hz and at 

amplitude of 60° while measuring their 3 rotational components of eye movements (the 

measurement device moved with the monkeys' head and the monkeys fixated a static target point). 

In agreement with function al, they found that the pattern of eye position change was a necessary 

condition for stabilization of the gaze. Furthermore, they found that the quick phase of the VOR 

tilts out of the Listing's plane in a manner similar to saccades, which do so to obey the Listing's 

law, and with gains of .92, .87, and .66 for the horizontal, vertical and torsional axes respectively. 

Fixations with imperfect gains, particularly for torsion, may support conjecture a2 about 

orthogonality between the rotation and translation vectors even-though this condition is more 

constraining then the Listing and Donders' laws alone (the later refers only to rotations relative to 

the head). In addition, Crawford and Vilis (22) indicated that the position signals from the ocular 

motor-neurons perfectly matched to actual eye positions. This is a necessary input to the 

navigational mechanism assumed by the SPIN theory and is required to provide the initial 

conditions for the computation of egodistances after each saccade. Whether these conjectures, 

which were derived from pure theoretical considerations, hold empirically remain to be seen. 
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5. DISCUSSION 

The SPIN theory regards space perception as a navigational process. Its essence can be 

extracted in following single key sentence: The mind's eye observes a 3-D representation of the 

world given in world centered coordinates. From this single sentence the rest of the arguments 

follow. First, it implies that the computations required for 3-D representation are carried out 

automatically and unconsciously. Therefore, our mind's eye does not observe the instability of the 

retinal image nor its distortion. Our mind's eye does not observe even the fact that the retinal image 

is inverted or smeared. Whenever we open our eyes, objects are perceived out-there-in-space. This 

representation is perceived only after the inverse transformation stage of the model (project-out) is 

carried out. Second, in order to obtain a stable representation, the theory considers eye movements 

in space which turn the traditional conception of the visual input, from a frozen picture to the optic 

flow. Third, projective geometry considerations indicate that the shift of any retinal point depends 

not only on the magnitude of eye movements but also on the distance from the eye to that point. 

Therefore, the theory considered the retinal motion, particularly the motion parallax, as the basic 

and reliable source of information for 3-D reconstruction. Here, we arrive at a basic theoretical 

difficulty because the problem of 3-D reconstruction was considered in the literature as 

indeterminate. This indeterminacy could be easily dismissed by assuming extraretinal signals as a 

reliable source of information about the position and motion of the eyes in space. But I have 

presented arguments which lead to the conclusion that instability of a static scene should be visible 

had the scene ultimately stabilized on the basis of extraretinal signals. Therefore, the main 

theoretical endeavor was invested in the mathematical derivations, and computer simulations to 

show that all the necessary information for 3-D reconstruction exists may in the optic flow as 

suggested by Gibson's direct approach (4-6). This effort turned out to be successful because we 

are able to show that the problem of passive navigation has a metric solution when we fixate. This 

solution was produced without the need of a priori knowledge about the objects, except for the 

assumption that they are static. Fourth, the theory assumes that in normal uncorrected vision a 
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static scene is perceived veridically. For that, the computation procedures needed at least one metric 

measurement unit. Three such candidates for metric units were identified by our analysis. In 

monocular vision these are: 1) the radius of the eyeball; 2) the distance between the eye-system and 

head-system origins. For binocular vision the metric unit is: 3) the inter-ocular distance. Fifth, 

empirical data and kinematical considerations indicate that vision is inhibited considerably during 

saccades. Therefore, the theory assumes that the extraretinal signals are utilized to update the 

navigational computations about the change of the eye position in space and enables the continuity 

in the visual experience. Moreover, the theory is mathematical and deterministic in nature and gives 

way to qualitative measurements in which calculations replace debate. 

I consider the Wertheim and the computational models as competitive explanations to the 

SPIN theory. While I find Wertheim's model as a conceptually correct, it is interesting to note that 

its main drawback in this scheme is manifested by the computational models because the later are 

facing the indeterminate-scale problem. This problem means that one cannot decompose the retinal 

shifts into independent components of translation and egodistance. Thus, according to the 

computational models, one central element in Wertheim's model - the reference signal that encodes 

the eye motion in the inertial space - cannot be extracted uniquely from retinal information. In turn, 

the computational models yield only relative depth perception which does not preserve all of the 

object's constancies. 

The SPIN theory remedies these drawbacks by postulating absolute depth perception. But 

the question is, what kind of empirical evidence lends support to this theory? 

Even though absolute depth perception may not be reflected in human's conscious reports 

given in controlled laboratory experiments, there are many examples of behavior that indicate 

scaled depth perception. To cite a few representative cases, the ability of a rat to modify the force 

of his jump as a function of the distance between one stand and another (26) implies that the rat has 

metric perception of distance. As for humans, without scaled depth perception how can skilled 

athletes and other people precisely control the force and timing of their actions toward distant 
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targets? For example, a batter has to ensure that the bat meets the ball at a particular time and place. 

Recent measurements on the ocular occlusion phenomenon have shown that in human 

observers this magnitude is about 11mm (27). Furthermore, when an eye in 6 degrees of freedom 

is considered, the distance between the origins of the eye and head systems presumably serves as 

an additional scale. Analogously, for binocular vision the distance between the eyes, known as the 

inter-ocular distance, is the scale. A psychophysical support for the latter conjecture was recently 

obtained by Hadani and Julesz by showing that the perceived depth in random dot stereogram was 

highly correlated with the observer's inter-ocular distance (28). Furthermore, depth judgments of 

45 subjects fall nicely on the theoretical curve calculated from a formula that is based on 

triangulation. This finding has received additional support by neurophysiological measurements 

showing that cells in VI of monkeys respond to the absolute depth of random dot stereogram (29). 

Eye movement measurements with^ree head made by Collewijn et al. (30) have shown a 

high degree of accuracy of saccade, which is as good as the accuracy that is measured with fixed 

head, and there is a good eye-hand coordination with free head (31). These findings suggest the 

existence of a veridical scale in the visual pathways that enables accurate commands to the eye's 

(and other motor) muscles to reach their target. Accurate saccade with a free head also indicates that 

the oculomotor control mechanism takes into account the combined motion of the eye and head in 

space with the egodistance of the object. The significance of the Collewijn et al. (30) finding to the 

present arguments is manifested when one considers the fact that saccades are attention-driven 

preprogrammed movements of the eyes. As such, they are not guided by visual feedback and the 

accurate commands are essential for reaching (foveating) the target. 

Given the above evidence, particularly the high correlation of stereoscopic depth judgment 

on the inter-ocular distance which suggests the latter as a scale in binocular vision, it is unlikely 

that the monocular mechanism utilizes an indeterminate-scale solution, as suggested by the 

common view. Thus, I suggest that the visual system as a whole reconstructs objects with a metric 

scale. The SPIN theory shows that this type of solution is mathematically feasible (3). Moreover, 

17 



the assumption made by the theory about the metric representation nicely solves the position and 

size constancy problem because if the mental representation is given in terms of object's 

coordinates undergoing linear transformation, then the position and the distance function are 

preserved. 
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APPENDIX B: 
PERCEPTUAL CONSTANCY AND THE MIND'S EYE LOOKING THROUGH A 

TELESCOPE 

1. INTRODUCTION 

The geometric constancies of position size and shape, during head and eye movements in 

space, are not fully understood, even if one accepts any of the advanced theories of visual stability 

that were recently published in two target papers in the same issue of Behavioral and Brain 

Sciences (Bridgeman, van der Heijden and Velichkovsky 1994; Wertheim 1994). These 

explanations compete with the original concept of efferent copy that nulls the movement signals on 

the retina (von Hoist 1954), yet leave some unsolved puzzles. How is it possible that static objects 

closer or farther from a static surround, appear at a standstill instead of moving faster or slower 

than the static surround? Furthermore, how is it possible that correcting glasses, prisms, and other 

prosthetic optical devices that slightly magnify or diminish the retinal image, do not affect the 

stability of the visual world after brief adaptation? Here, we propose that in order to achieve 

stability for objects at different distances from the viewer's eye, the objects may be represented as 

if viewed via a 1:1 magnification telescope at a) optical infinity, as if the image projected on the 

mind's eye were collimated (Julesz 1995), or b) at their veridical distance (Hadani et al. 1978; 

1980a). The first suggestion diminishes the stability problem for linear shifts of the eye and 

provides a way to solve the rotational component. The second suggestion treats both components 

of eye movements computationally. 

The simplest nonmagnifying collimator is a telescope that requires two lenses of equal focal 

length (and of course, more than two compound lenses can both collimate the input and correct for 

many aberrations of the first lens). We propose that one of the lenses of the mind's eye is the 

optics of the eye; the cascaded lens is provided by the neural computation mechanism and 

encompasses a) the retinal and extraretinal signals that encode the motion of the eye and the head in 

space, and b) a cortical zooming mechanism that operates at anatomical mapping of various brain 



areas from the fovea to VI, V2, and higher visual centers. Thus, the mind's eye can be conceived 

as a fictitious observer in the form of an array of spatiotopically mapped receptive fields, viewing 

the world through a 1:1 magnification telescope. 

Visual stability as treated by three main streams in perception 

The visual world, as described by Gibson (1950; 1966; 1979) has the property of being 

stable and unbounded. By stability, Gibson meant that the perceived world does not seem to move 

when one turns his eyes or his head around. By unboundedness, he meant that the perceived world 

does not seem to have anything like a visible circular or oval window frame. Thus, the phenomenal 

world seems to stay put, to remain upright, and to surround us completely. This experience, 

according to Gibson, is what a theory of perception must explain (Gibson 1966). Another 

difficulty for any theory of perception is the fact that the organism cannot scrutinize his retinal 

image directly, but only after some major transformations have taken place by early and 

unconscious mechanisms of visual processing. Pure projective geometry considerations tell us that 

the two-dimensional retinal image is optically inverted, distorted (due to the spherical structure of 

the eye), and constantly moving and jumping across the receptors (due to the combined motion of 

the eyes in the head and the head motion in space). Yet, neither these expected image distortions, 

nor the retinal slips (or the resultant blur) are perceived. Moreover, objects are also perceived 

monocularly out there and at different distances from the eye. 

Attempts to address the problem of objects' constancies (or the problem of visual stability) 

can be classified into three main categories: 

a) The traditional inferential approach 

b) The Gibsonian direct perception approach 

c) The computational approach 

The traditional inferential view regards visual stability as a large problem that is solved by 

several subsystems and with the aid of a great number of cues (see Shebilske 1977). Different 

explanations suggest that we perceive static environment as static, depending on the outcome of the 



following mechanisms: a) the elimination mechanism that uses subtraction; b) the translation 

mechanism (the take-into-account explanation) that uses compensation; c) the evaluation 

mechanism; and more recently, d) the calibration mechanism. (For a detailed discussion on the 

differences between the various mechanisms, see Shebilske 1977; Bridgeman et al. 1994.) 

Two general notes on the inferential approach: First, most explanations concentrate on eye 

movements (pure rotations) relative to the head, leading, at best, to egocentric representation that is 

not time invariant. This drawback was remedied partially by the direct approach (Gibson 1966; 

1979) and has received an important role in Wertheim's (1994) model. Second, the role of distance 

of objects from the eye in visual stability is underestimated. Therefore, depth perception and visual 

stability were treated separately. 

The second category includes the Gibsonian direct perception and Wertheim's theory. 

Gibson (1950) has pointed out that the retinal projections contain considerably more information 

on the visual world than has been assumed by the traditional inferential approach. The 

transformations that successive retinal projections of the same rigid object are undergoing during 

locomotion of the observer contains some "higher-order" variables, that are candidates for the 

extraction of signals that could specify eye movements. Thus, the Gibsonian approach assumes 

that the perception of ego and objects' motion is derived exclusively from retinal afferent 

information, and explanation of visual stability does not need the concept of extraretinal signal 

(Wertheim 1994). Although Gibson (1966) recognized that vestibular and somatosensory afferent 

may also contribute to the percept of egomotion, in a later paper (Gibson 1968), he takes these 

signals as having only a role of confirmation. A major point of difference between the direct and 

the inferential approaches is that the former assumes that in normal vision, perception is veridical. 

Attempts to bridge the gaps between the first two approaches include the Dual Mode model 

and the Wertheim model. The Dual Mode theory (Mack 1978; Matin 1986) has developed from 

concepts originally formulated by Wallach (Wallach 1959) to explain the phenomenon of center- 

surround induced motion. According to the Dual Mode theory, there exist two modes of visual 



perception: a) A direct mode, in which extraretinal signals play no role, and that yields veridical 

percepts, and b) An inferential mode, which makes use of extraretinal signals, and that may yield 

illusions of motion. The theory assumes that there are two kinds of cues that may generate a 

percept of motion: object-relative and subject-relative cues. The object-relative cues stem from 

motion of objects relative to each other. The subject-relative cues stem from object motion relative 

to the observer. Wertheim (1994) presents evidence that shows the logic of the Dual Mode theory 

is flawed because the empirical criterion for distinguishing between the two modes is questionable. 

In turn, Wertheim (1994) presents a more comprehensive theory of visual stability in which retinal 

and extraretinal signals are combined and create a reference signal that encodes the movement of 

the retinal surface in the inertial space. An important point in Wertheim's theory is the recognition 

of the fact that extraretinal signals are partial or inaccurate and therefore, cannot serve as a reliable 

source for visual stability (Wertheim 1994; see also Howard 1986). The later argument provides 

the retinal signals a crucial role in establishing object constancies. 

Common to most explanations of visual stability is the consideration of the visual stimulus 

as a homogeneously moving pattern in the fronto-parallel plane. Differential motion of surface 

points, as well as a surface's egodistance, is not usually considered. In our view, this 

oversimplification is a serious drawback of both approaches and leads to qualitative models of 

restricted nature. The drawback can be remedied by the rigorous computational approach where the 

frame of reference of the reconstructed objects is explicitly specified (see Hadani and Julesz's 

commentary in Wertheim 1994). However, computational analysis of the stability problem led to a 

different theoretical deadlock, which is the indeterminacy of the obtained solutions. The only 

determinate solution in the computational approach was obtained by a navigational theory of space 

perception advanced by one of us (Hadani et al. 1978; 1980a; Hadani 1991; Hadani et al. 1994) 

and is now called the Space Perception In Navigation (SPIN) theory (Hadani 1995). In general, 

the computational approach has no metaphorical window to elucidate what 3-D reconstruction or 

what shape from motion computations, means with respect to the mind's eye. Therefore, in the 



following sections, we discuss various computational solutions and suggest the type of 

metaphorical window that can represent them. 

Computational, navigational models differ from the two earlier approaches by also 

considering, within the context of visual stability, the egodistance and the 3-D structure of objects. 

(Hadani et al. 1978; 1980a; Longuet-Higgins and Prazdny 1980; Bruss and Horn 1983). Because 

of the complexity of the stability problem, the computational models are usually restricted to static 

(rigid) objects and the perceptual constancy problem is reduced to the analysis of the ability to 

recover from the optic-flow the six motion parameters of the eye (the reference signal), the 

egodistance, and/or the structure of objects. Bruss and Horn (1983) call this capacity Passive 

Navigation, a notion that we take as equivalent to the direct perception concept, with the exception 

that rigorous mathematics have been added. Several approaches are used to address the issue: the 

discrete approach (Longuet-Higgins 1981; Hadani et al. 1980a; Meiri 1980; Nagel 1981; Tsai and 

Huang 1985), the differential approach (Koenderink and van Doom 1976; Longuet-Higgins and 

Prazdny 1980), and the least squares approach (Prazdny 1981; Bruss and Horn 1983). Works in 

the discrete and differential approaches are also characterized by analyzing the minimum conditions 

under which an ideal observer can solve the passive navigation problem. These minimal conditions 

are given in terms of a number of points and views. The most rigorous solution was advanced by 

Tsai and Huang (1984). They show that seven points and two views are required to recover the 

distance and the motion parameters (but up to a scalar in the translation vector). Longuet-Higgins 

and Prazdny (1980) show that the structure of object and motion parameters can be recovered from 

a single point and its near neighborhood (again, up to a scalar in the translation vector). Thus, the 

solutions in the computational approach face a scale ambiguity problem 

In contrast to the common view in computational vision, and in line with the concept of 

direct perception, the SPIN theory claims that the passive navigation problem has a unique 

solution, and this claim is supported by showing an existence proof (Hadani et al. 1994; Kononov 

1996). Furthermore, the SPIN theory suggests three intrinsic "hard-wired" measures: a) the radius 



of the eyeball, b) the fixed distance between the head system origin and the eye system origin, and 

c) the Interocular Distance - as metric units to scale the objects in physical units. The general 

solution offered by the SPIN theory for both passive and active navigation (without or with 

extraretinal signals, respectively) was possible because of the clear distinction that was made 

between retino-centric, head-centric and object-centric representations (Hadani 1995). The analysis 

attaches to each system a separate coordinate system and utilizes linear transformations to exchange 

representations between the different frames of references. For example, to solve the isolated 

passive navigation problem, there is no need to consider the head system, but only the eye and 

space systems as frames of reference. Then, the 3-D coordinates of objects are projected onto the 

retina through a pinhole and get a 2-D retino-centric representation. Optic-flow analysis is then 

applied to calculate the egodistance of each image point and the six motion parameters of the eye in 

space. The egodistance of each point, with its 2-D retinal location, accomplishes a 3-D retinotopic 

representation. Knowing the relative orientation between the eye system and the object system 

enables the projection of the retino-centric representation into objectcentric representation. The 

object-centric representation reflects the out-thereness of the perceptual experience. Furthermore, 

because linear transformations are invariant to the position of static points as well as to the distance 

function, then position, size and shape constancies are preserved in mental representation. Because 

this solution relies only on retinal information, a question is raised as to how such a system can 

confirm the veridicality of its solution. The consideration of this question in the context of normal 

and prosthetic vision led us to the statement of the magnification and distance paradoxes to be 

described in Section 4. Let us first examine, however, the meaning of visual perception offered by 

the three approaches as reflected by their metaphorical windows. 

2. THE DIFFERENT WINDOWS METAPHORS AND THE TELESCOPE 

To explain to novice students the essence of visual perception, investigators in the 

inferential approach introduce the concept of a projection plane in front of the observer (Goldstein 



b) 

Figure 1.        Two illustrations of Alberti's window metaphor. 
(a) An artist painting a perspective using the Alberti's window method (From 

Goldstein 1996.) 
(b) Schematic illustration of the Alberti's window utilized in a "structure from 

motion" treatise (From Cutting 1986.) 



1996; Cutting 1986) as shown in Figures la and lb. In Figure la, the window is static with 

respect to both space and the observer's vantage point. In our view, this ancient metaphor, 

called Alherti's window, is misleading. First, it does not account for many of the static features of 

the retinal image like spherical distortion, inversion, etc. Second, if the window or the observer 

moves, the position of the objects' representations in the window will change. Thus, position, 

size, and shape constancies are not preserved. Third, the image would be blurred by motion. 

Fourth, no veridical space perception can be recovered from a static image. Furthermore, this kind 

of interpretation of space perception leads to the most ambiguous theoretical situation where, in 

principle, an infinite family of spatial objects of different shapes and of different orientations may 

have the same retinal representation, or conversely the same retinal image may evoke the percept of 

an infinite number of real objects having different shapes and orientations as illustrated in Figure 2. 

Figure 2. The common view in visual perception regarding the uncertainty in object 
reconstruction. Note: Different layouts (i, ii, iii) in different orientations project the same two- 
dimensional patterns in the picture plane B that represent Alberti's window, and consequently on 
the retina of the eye C. (From Hochberg 1971). 



The analogous metaphor in direct perception attaches the window to the observer's head. 

Figure 3, which illustrates this metaphor, is depicted by Gibson as an upgrading of one made by 

Mach (1959), was entitled The Visual Ego (Figure 4). The Visual Ego metaphor better represents 

the dynamic nature of vision. Gibsons' improvisation of the Visual Ego is comprised of three 

snapshots (Figure 3). Each snapshot is made for a different heading direction. However, the three 

snapshots may not immediately reflect what Gibson meant by his conception of the mind's eye. Let 

us suggest our interpretation of these drawings. In our view, they demonstrate, in the first place, 

the "out-thereness" of the perceptual experience, e.g. that objects are perceived out there in space 

and not on some internal 2-D neural screen. Moreover, the reader may note that Gibson's nose is 

shown in all three drawings occupying the same position. Gibson's nose is an object that is 

attached to his head, and in this respect it is egocentered. The TV set shown in all three drawings is 

an external static object, but occupies different positions. Thus, the pertinent question here is: 

which of the two, the TV set or the nose, has a time invariant representation in Gibson's mind's 

eye? The reader can easily test and answer this question by rotating his head about a vertical axis 

while fixating, monocularly, a static object and attending to her nose. The reader may realize that 

the external static objects are normally perceived as static, while her nose is perceived as moving 

relative to the static object. 

The meaning of the Visual Ego metaphor is that perception can be conceived as a process 

that turns the eyeball into a transparent window in front of the mind's eye, which is situated inside 

the skull. This analogy makes objects to be perceived as being stable and as to be viewed as out 

there and presumably, at their veridical distances. The transparent window metaphor apparently 

eliminates the need to compensate the retinal image shifts against head movements because the 

window is firmly attached to the head (though it still requires stabilization of the image against eye 

movement). This kind of representation, as the SPIN theory analysis can show, leads to egocentric 

(or head-centric) representation, which is time variant, and does not represent what we normally 

experience when we observe the world through the Visual Ego. As mentioned earlier, the visible 



Figure 3. Gibson's improvisation of the Visual Ego metaphor originally advanced by Mach. 
The three drawings show three different snapshots of Gibson's study as seen by his mind's eye 
while sitting on a comfortable chair. Each snapshot is made for a different heading direction. The 
three snapshots demonstrate the "out-thereness" of the perceptual experience. Note that Gibson's 
nose is shown in all three drawings occupying the same position. The TV set, which is one of the 
external static objects, occupies different positions. The question is: Which of the two, the TV set 
or the nose, has time invariant representation in Gibson's mind's eye? The reader can easily test 
and answer this question himself by rotating her head about a vertical axis while fixating a static 
object and attending to her nose. The reader will realize that the external static objects are perceived 
as static while her nose is perceived as moving relative to the static object. (From Gibson 1979.) 
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Figure 4.        The world seen by the left eye as depicted by Mach. This metaphor is named by 
Mach as the Visual Ego. 
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top of our nose is seen as moving relative to the stationary environment as would be expected in 

object-centric representation. Only with attentional effort can we perceive the objects moving 

relative to the nose, had the representation been head-centric. (Note that the ability to switch 

between the two modes expands the Dual Mode theory in the sense that different external objects - 

body centered, stationary, or moving - can be perceptually selected as our world's static frame-of- 

reference). In order to get a prolonged static (time invariant) percept of objects, one has to 

transform a retino-centric or head-centric representation that one may have at some stage of early 

computations, into object-centric representation. This can be done navigationally by integrating the 

"reference signal" (Hadani et al. 1994; Hadani 1995). Integration is obtained by updating the 

transformation matrices that describe the momentary relative position of the eye-head and head- 

space systems. Although Gibson was not aware of the available mathematical tools required to 

elucidate this point, we believe that he intuitively realized the objectcentric character of perception 

because he had indicated that direct perception is not characterized by egocentric representation 

(Gibson 1979, p. 201). Moreover, the SPIN theory disagrees with the interpretation given to direct 

perception by computational investigators regarding it as a look-up table (Ullman 1980). The SPIN 

theory analysis suggests that Gibson was theoretically correct about the notion of direct perception 

by showing that passive navigation can be obtained analytically. The question is whether it can be 

obtained empirically (see Discussion). 

What are the analogous metaphors of the computational approach? Practically, the retinal 

image is taken as the effective window, as shown in Figure 5. However, the indeterminate solution 

means that on the sole basis of retinal signals we cannot perceive absolute depth, but only relative 

depth. Therefore, indeterminate solutions cannot achieve veridical object's constancies. The 

theoretical implication of this kind of indeterminacy is illustrated in Figure 6 by a family of parallel 

trapezoids. The reader should note that the degree of perceptual ambiguity obtained in the 

inferential approach (Alberti's window) is greatly reduced by the computational approach because 

the family of possible objects that can be reconstructed is limited to affine (or zooming) 
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P(X,Y,Z) 

Figure 5. A standard window "metaphor" utilized by the computational approach to define the 
optic-flow. Note: The cartesian coordinate system is attached to the moving eye where origin is 
coinciding with the pinhole (exit pupil). Thus, the window shown is also attached to the eye and is 
positioned in front of the pupil. (From Simpson 1993.) 

transformation. In other words, this means that we cannot perceptually distinguish between a near, 

but small object and far, but large object (Ullman 1979, p. 199; Bruss and Horn 1983). 

Moreover, it means that Wertheim's reference signal cannot be uniquely recovered and that visual 

stability can be obtained only with extraretinal information because they also encode the motion 

parameters of the eye in space. However, as noted earlier, the extraretinal signals are partial and 

inaccurate; thus, they cannot conceivably serve as a reliable source that supplement visual stability 

during fixations. They presumably serve the role of filling in the reference signal during saccades, 

e.g. when retinal signals are ineffective (see Hadani et al. 1994; Hadani 1995). 

This discussion naturally raises the following question: Given that the retinal image is not a 

good metaphor for mental representation, what kind of metaphor could better represent the 

computational approach? As a first approximation, we would like to adopt the Visual Ego, 

suggested by Mach and elaborated by Gibson, for head movements. However, analysis of space 

perception in the context of prosthetic vision (Section 4), brought us to arrive at the telescope 

metaphor to be presented next. 
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Figure 6. (a) The solid trapezoids (i, ii, iii) demonstrate the reduced uncertainty in object 
reconstruction obtained by the computational approach. Note: The three trapezoids represent an 
infinite family of parallel objects having a size scaled by the distance from the vantage point 
(compare with figure 2). (b) The degree of uncertainty, further diminished by the SPIN theory 
from infinite family of objects to a single object at the veridical depth (trapezoid i). Note: The 
ambiguity interval in reconstructing egodistance on sole basis of motion parallax cue is depicted by 
the dashed trapezoids (ii, iii) that are flanking trapezoid i. 
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3. THE TELESCOPE METAPHOR 

The simplest nonmagnifying telescope requires two lenses of equal focal lengths (and of 

course, more than two complex compound lenses can both collimate the input and correct for many 

aberrations of the first lens). We propose that one of the lenses of the telescope is the optics of our 

eye; the cascaded lens is provided by the retinal and extraretinal signals and some neural circuits 

that can zoom (scale) the size of the perceived objects with their perceived distances. One of the 

features of these neural circuits may be the cortical magnification factor in anatomical mapping of 

various brain areas from the fovea to VI, V2, and higher visual centers that may provide several 

computational simplifications. The other feature is a neural zooming mechanism that operates at 

early stages of visual processing. The mind's eye, in this metaphor, is the collimated image at the 

output of the telescope that is captured by an array of spatiotopically mapped receptive fields. 

The importance to space perception of the cortical magnification factor, in the form of a 

multiple logarithmic transformation, has been suggested by Schwartz (1980) in order to perform 

some affine transformations that seem to simplify operations that occur in form perception [e.g., 

retinal polar coordinates are transformed on VI to the conceptually simpler cartesian coordinates]. 

Here, we argue that this factor, which may seem to introduce severe deformations in the 

representation of objects in the visual cortex, presumably, may play an additionally important role 

in visual stability by enabling a simple (similar) matching between two spherical systems that play 

a role in the control of eye movements: the fixed-with-respect-to-the-eye retinal polar system and 

fixed-with-respect-to-the-head orbital system. Both systems, being spherical, may be best 

represented with polar (or spherical) coordinates. Then, simple matching between the two systems 

can be obtained only when the eye is in the primary position and both systems coincide. However, 

when the eye maintains a secondary or tertiary position, there is no match between the two. Had 

the attention-driven, oculomotor-control mechanism utilized polar coordinates, more complicated 

computations to calculate the ballistic trajectories of saccades from one orbital position to another 

would be required. Much simpler computations may be required if the retinal and the orbital 
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coordinates are similar. This can be obtained, as suggested by Schwartz, by multiple logarithmic 

transformations converting both systems into cartesian. Then, rotations between the two systems 

are converted into translations. 

The other feature, suggested as a mechanism for the cascaded lens is the neural zooming 

circuits. The conjecture that such mechanisms are used is supported by the size constancy 

phenomenon, stated as Emmert's law. Indeed, objects are perceived as having constant size even 

as their retinal image increases many fold when they are viewed at reduced range. It can easily be 

shown with afterimages or with a tiny monitor attached to one's spectacles frame that the perceived 

image on the monitor, or the afterimage, shrinks as one inspects surfaces at increasingly closer 

ranges in order to achieve size constancy. Obviously, some cortical zooming mechanism at a rather 

early stage must perform this zooming operation. Furthermore, it has been suggested that 

infinitesimal affine transformations (also called Lie-germs, after the mathematician Sophus Lie) 

performed in the visual cortex can produce size and shape constancies (Hoffman 1970; Dodwell 

1983) and emulated as a model on the Connection Machine by Papathomas and Julesz (1989). 

Our suggestion that the retinal signals with the extraretinal signals and/or neural zooming 

circuits might be used to supplement the eye's optic by acting as a telescope in the viewer's 

perceptual system (what we call the mind's eye). We think this is novel and can explain many 

seeming paradoxes of visual stability. Whether this hypothesis can be experimentally confirmed 

remains to be seen, but as a possibility has some heuristic appeal. 

4. THE MAGNIFICATION PARADOX 

Analysis of realistic visual situations by utilizing the Visual Ego metaphor leads to several 

perceptual puzzles, particularly its inadequacy to account for prosthetic vision. These puzzles 

become more enigmatic when observers use low power prosthetic optical devices, such as 

correction glasses, that modify the effective magnification of the retinal image without affecting the 

stability of the perceptual experience. However, when the power of the optical device is high, such 
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as a binocular with 3x magnification or higher, the observer can hardly adapt to the impairment in 

stability (Demer et al. 1991). One of the aims of the present article is to state these puzzles and to 

suggest ways to resolve them with the help of the telescope metaphor. Because visual stability is 

basically a monocular phenomenon applicable to static objects, we will ignore problems of 

binocular vision and the perception of real motion. 

Perceptual constancy, however, does hold under two puzzling circumstances: 

A) When objects are in front or behind a reference plane (platform), and therefore, should 

move faster or slower than the platform, respectively, and with increased (or decreased) velocities 

as their distances from the platform become larger (or smaller), they are seen as stationary. For 

those workers in perception who do not believe in the percept of absolute depth, this perceived 

stability of the stationary, visual world - regardless of distance - is particularly enigmatic. We call 

this the Distance Paradox. 

B) When optical devices are attached to the head in front of the viewer's eye with 

magnifications slightly larger or smaller than 1:1, one would assume that the stabilized platform at 

1:1 magnification would drift faster (or slower) than the observer's head and eye movements as the 

optical magnification is larger (or smaller) than 1:1. Nevertheless, although new prescription 

glasses might cause momentary errors of visual stability, the visual system quickly adapts to the 

new glasses resulting in complete stability. Readers who wear bifocals, can verify that there is 

always a visible shear motion in the boundary of a bifocal lens. Only one side of the two half 

lenses can be stabilized at a time. We argue that perceptual phenomenon obtained in the 

unadapted aperture creates a Magnification Paradox. 

In the sequel, we propose that both paradoxes can be resolved by the telescope metaphor a) 

when the retinal projection is a collimated and stabilized array; thus, effectively originating from a 

projection center at infinity, and b) when the objects are perceived at their veridical distances. We 

also propose that in normal uncorrected vision or after adaptation to an optical device, the effective 

magnification of the visual world at the mind's eye is 1:1 and the scene is perceived as stable in 

17 



spite of eye and head rotations. However, when the magnification of an optical device is high and 

cannot be adapted, the perceived distance of the scene changes too. 

Some observations on visual stability with prosthetic vision 

In order to better understand the magnification paradox, one may imagine a situation in 

which a visual scene is observed monocularly through a high magnifying monocle (1:3 or higher) 

that is attached firmly to the head (a monocle of a magnifying binocular can serve for that purpose). 

Alternatively, in the case of low power devices, where adaptation is fast, one may try to 

monocularly view the visual scene via a bipartite field (e.g. through both parts of bifocal glasses or 

through the border of simple correcting glasses). Then, rotating the head by swinging it left and 

right results in visible shear motion at the borderline. If the magnification imposed by the optical 

device is smaller than that of the unaided eye (as is the case with a single negative correction lens), 

then that part of the scene observed through the lens, and not adapted, will move in the same 

direction of the head movement while the other part will remain stationary. If the magnification 

imposed by the optical device is larger than that of the unaided eye (as is the case with positive 

correction lens), then the scene will swing in a direction opposite to the head rotation. When the 

whole scene is observed via a high power device, the magnified image cannot be stabilized by 

adaptation and the image will move in the opposite direction of the head. (The inverse effect occurs 

by inverting the binocular and observing the scene via the objective lens.) These image swings 

actually mean an impairment to the visual stability that any observer, with noncorrected vision, 

normally experiences. Furthermore, with bifocal or single-lens corrective glasses, one can easily 

observe that it is possible to stabilize either part of the visual field voluntarily and almost without 

practice, but it is impossible to stabilize both parts simultaneously. 

It can be shown that an observer can adapt to different whole field magnifications 

introduced to the two eyes. This capacity indicates that the visual system can adapt to small 
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magnification variations, and that this adaptation is probably carried out by independent monocular 

mechanisms. 

Having pointed out situations in which a magnifying device impairs visual stability in one 

direction of the head rotation and an image diminishing device impairs stability in the opposite 

direction, let us define unity magnification as the magnitude of the apparent magnification of the 

perceived scene viewed with a normal, unaided eye when no impairment of visual stability is 

observed. The last definition is different from the magnification of the optical apparatus of the eye - 

the cornea and the lens - in the sense that it refers to the apparent magnification of the mind's eye. 

Adopting the definition of unity magnification, one can visualize the mind as a fictitious observer 

(say, an array of spatiotopically mapped receptive fields) situated inside the skull, observing the 

world through a unity magnification telescope. Unity magnification means that the scene observed 

by the mind's eye is not distorted as would be expected from the high refracting power of the eye's 

optics and from the cortical magnification factor. Indeed, unity magnification also means that the 

angular velocity of the perceived image is opposite but equal to the angular velocity of the head. 

Then, for a stable scene, the ratio of the perceived image-angular velocity to the head-angular 

velocity equals one and the difference between the two (the amount of instability) equals zero. 

Now, imagine a situation where the head of a human observer rotates by an integral 

rotation about a vertical axis while the eye maintains the primary position at the beginning and at 

the end of the head rotation. Then, pure kinematical considerations show that the observer's eye 

rotated exactly by an integral rotation in space about a vertical axis (for better realization of the 

physical situation of integral rotation of the eye in space, one may consider the observer's eye fixed 

to his or her head throughout the whole rotation). The magnification paradox becomes obvious 

when one considers two cases of a rotating monocular observer: a) the observer has normal 

uncorrected vision and is equipped with a cross-hair in front of her eye; the cross-hair is attached to 

her head and centered at the optical axis in the primary position, and b) the observer is equipped 

with a magnifying device having a reticle with a central cross-hair. In case a) the observer should 
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not experience any image instability. In case b), however, the visual scene observed, via the 

monocle, is perceived to be continuously moving relative to the head. As we indicated earlier, the 

magnitude of the image movement is sign dependent and is a monotonic function of the magnifying 

index of the monocle (Gase b). It should be zero for the unaided eye (Case a). However, in both 

cases, when the integral head rotation is accomplished, he or she will see, coinciding with the 

cross-hair, exactly the same visual point that was overlapped by the cross-hair at the initiation of 

the rotation. The enigma here is that a spatial point viewed via a magnifying device with the head 

performing one integral rotation (that makes the point to be perceptually moving via the 

metaphorical window at an angular velocity different than the head), ends up with perceiving the 

same point at the same position, as when the head rotation had been started. This result is in 

contrast with the expectation that the positional error of the unstable image will reset itself as some 

point of the integral rotation, or alternatively accumulate and create a positional error at the end of 

the rotation. Yet, the reader can verify that no reset occurs and positional error is not integrated. 

Thus, image instability creates a magnification paradox. 

5. DISCUSSION 

Essential differences between three approaches in cognitive psychology, all dealing with 

the problem of perceptual constancy, were examined in this chapter with the help of their 

representative metaphors. This examination required, in the first place, identification of the 

representative metaphor that best represents each of these approaches, particularly the direct 

perception and the computational approaches. Thus, our choice may be disputable and needs 

justification. The Alberti's window did not create a problem because it is extensively used in old 

and modern treatises of sensation and perception (Goldstein 1996). As for the visual ego, we argue 

that although Gibson himself used Alberti's window in his latest book to illustrate the ambiguity 

that perspective projections creates to vision (Gibson 1979), we believe that the visual ego is a 

better representation of Gibson's view, at least it is at the latest evolutionary stage of his theory. 
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Moreover, a different improvised Mach's visual ego appeared in his 1950 and 1966 books, and 

indicates that this provocative metaphor of the mind's eye attracted his attention and motivated him 

to add his own interpretation that also appeared in his 1979 book (Figure 3). Our choice of the 

retinal image as a tentative metaphor for the computational approach was based on the standard 

definition of the optic flow (Bruss and Horn 1993; Simpson 1993). However, as indicated earlier, 

the nature of the effective window, after the computations are carried out, remains ambiguous, 

leaving room to suggest the telescope metaphor as one that may inspire the computational 

approach. 

The telescope metaphor has all the advantages of the ego metaphor and more. Being 

attached to the head, it emulates the need to compensate for rotational head movements (although, it 

does not explicitly manifest the need to compensate for eye movements relative to the head). The 

input to the mind's eye in this metaphor is taken as the image that is created by the cascaded neural 

lens at the exit of the telescope. Thus static objects in front of a static platform are seen as static 

when the eye moves because motion parallax is diminished for this collimated image - and may 

provide an answer to the distance paradox. The zooming mechanism emulates adaptation to 

correcting glasses, prisms, and other optical devices, making the metaphor a suitable model for 

both normal and prosthetic vision. It may provide an answer to the magnification paradox with the 

assumption that the ratio of the perceived and veridical distances equals the magnification of the 

telescope, and that unity magnification may yield veridical perception of distance. Moreover, a 

standard telescope generates linear shifts, rotations, and zooming, that are analogous to global 

affine transformations of translation, rotations, and dilation/contraction, respectively. Thus, visual 

stability in this model can be obtained by compensating just for this subgroup of the Lie 

transformations. Indeed, all these features of the telescope are presumably accomplished by the 

hypothetical cascaded lens that emulates neural processing of retinal and extraretinal signals. In 

conclusion, the telescope metaphor suggests that the perceptual problem of visual stability (or 

object constancy) can be metaphorically reduced to geometric optics. 
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The consideration of the metaphorical windows, as a reference for comparison between the 

three approaches, provided a simple way to illustrate the differences in the uncertainty of object 

reconstruction embedded in the different models. This uncertainty is shown to be the greatest in the 

inferential approach, it is considerably narrowed by the computational approach, and diminished 

by the direct perception approach. In the SPIN theory, it is explicitly reduced to a measurement 

error. In this context, we note that Ullman's interpretation of the ambiguity entailed in the 

computational approach, e.g. that "we cannot perceptually distinguish between a near but small 

object and far but large object" is correct but may have additional meaning. Here, we would like to 

suggest an alternative theoretical interpretation to the scale ambiguity in the computational approach 

which is more relevant to the core issue of this chapter. The scale ambiguity in the system of 

equations, derived by the computational models, stems from the fact that the number of unknowns 

is greater (by one) than the number of equations. Yet, a navigational-computation scheme 

(integration) can be applied even with this handicapped system of equations by assigning, as an 

initial condition, an arbitrary value for one of the unknowns such as egodistance or motion. The 

interesting consequence of this "trick" is that the system would produce a solution that retains 

position size and shape constancies across time. However, the reconstructed world and the motion 

parameters given by this solution would not be veridical except when the initial value assigned is 

veridical. Moreover, such a system may retain this nonveridical solution without sensing its 

contradiction with the physical world. An active system, on the other hand, can use the vestibular 

signals that are anchored to the inertial space to confirm the veridicality of its solution (Gibson 

1968) and to set the initial value to a veridical one. In humans, when a disparity between the visual 

and vestibular signals exists, they evoke the physiological unpleasant feelings of motion sickness. 

The fact that we normally do not experience motion sickness may suggest that in normal vision, 

there is an agreement between visual and vestibular signals and perception is veridical. 

The previous arguments tap the crux of the difference between the views of the two 

authors, as were reflected in the two versions of the telescope metaphor. The first view (BJ) is in 
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agreement with the consensus in computational vision about the perceptual implications of the scale 

ambiguity problem. Thus, this view adheres to the perception of relative depth. The second view 

(IH) is grounded on the SPIN theory's derivations and agrees with Gibson's claim about the 

veridicality of space perception. Thus, this view adheres to the notion of absolute depth perception. 

Indeed, this kind of dispute should be resolved empirically by conducting a crucial experiment that 

will decide between the two views. Because no such experiment is yet envisioned, we would like 

to present an additional observation involving prosthetic vision that may lead to the design of such 

a crucial experiment. The suggested observation becomes meaningful with the following two 

premises: a) The same object cannot simultaneously occupy two different locations in space, and 

b) In prosthetic vision, the perceived distance of a scene varies with the magnification of the 

device. The observation requires a simple negative lens (a correcting glass for myopia may suffice) 

that is mounted on one's head a few centimeters in front of the eye and covers only part of the 

visual field. The scene should be static. Due to the optical interference, some of the objects viewed 

close to the border of the lens, create double images (e.g. monocular diplopia). The first question 

raised by this observation is: Which of the two perceived double representations of the same object 

better represents its veridical position? Applying small head rotations may reveal that one, or both, 

of the images may be perceived at different egodistances and as drifting contingent with the head 

rotations. As noted earlier, it is likely that one of the double images may be adapted to yield a stable 

percept. Thus, the second question is: What is the meaning of the stability perceived under these 

circumstances? Or equivalently, what is the perceptual meaning of the notion of unity 

magnification? The significance of this kind of observation in resolving the dispute of relative- 

absolute depth perception stems from die fact that the extraretinal signals for the diplopic object are 

identical. 

In conclusion, Alberti's window is an ancient metaphor that does not faithfully represent 

that state of the art in perception. Gibson's version of Mach's inspiring visual ego metaphor better 

represents the dynamic nature of vision and the problem of perceptual constancy. The newly 
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derived and more sophisticated telescope metaphor may account for both normal and prosthetic 

vision and is suggested here as a challenge for the computational approach. Our observations on 

perception, using prosthetic vision, lead to certain paradoxes that should be resolved empirically 

and may provide an answer to the dispute on relative-absolute depth perception. 
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APPENDIX C: 
SIMPLE INTEGRATIVE METHOD FOR PRESENTING 

HEAD CONTINGENT MOTION PARALLAX AND DISPARITY CUES 
ON INTEL PROCESSOR BASED PCS 

Janos Szatmary, Itzhak Hadani, Bela Julesz 

ABSTRACT 

Rogers and Graham (1979) developed a system to show that head movement contingent 

motion parallax produces monocular depth perception in random dot pattern. Their display system 

was comprised of an XY oscilloscope driven by function generators, or a special graphics board 

that triggered the X and Y deflection of a raster scan signal. Replication of this system requires 

costly hardware that is no longer on the market. In this paper we show how the Rogers and 

Graham method can be reproduced with any Intel processor based PC with no hardware cost. An 

adapted joystick sampled by the standard game-port can serve as a provisional head movement 

sensor. Color monitor resolution in displaying motion was effectively enhanced 16 times by the 

use of anti-aliasing enabling the display of arrays of 1000 random dots in real time (double buffer) 

with a refresh rate of 60 Hz and above. The color monitor enabled the use of the anaglyph method, 

thus combining stereoscopic and monocular parallax manipulations on a single CRT display 

without refresh rate cost. The power of our display is demonstrated by a psychophysical 

measurement in which subjects nulled head-movement-contingent illusory parallax, evoked by a 

static stereogram, with real parallax. The amount of real parallax required to null the illusory 

stereoscopic parallax monotonically increased with disparity. 



INTRODUCTION 

Rogers and Graham (1979) were pioneers in advancing a dynamic display system showing 

that head movement contingent motion parallax produces a strong monocular depth percept in a 

random dot pattern. The unique characteristic of a random dot pattern is that this stimulus is devoid 

of monocular cues for depth as to the form or shape of the 3-D structure, by analogy with depth 

percept evoked by stereoscopic depth in Random Dot Stereogram (RDS) (Julesz 1960, 1971). 

This method indicates that motion parallax information is a sufficient condition for monocular 

depth perception. The original Rogers and Graham (1979) display system emulated motion 

parallax through the use of an XY oscilloscope driven by function generators that produced the X 

and Y deflection of a raster scan signal. Lateral head motion of the observer was sensed by a 

potentiometer yoked to a sliding chin rest. The latter signal was used to add a vertical waveform 

(sine, square or sawtooth) amplitude modulation to the X deflection of the dots. The modulation of 

dot position allowed the subject to observe horizontal monocular depth corrugations of the pattern 

in the fronto-parallel plane. Later replications of the system required, in general, costly hardware, 

or electronic-shop work. For example, a special graphics board to generate in real time a dynamic 

random dot pattern (Rogers and Rogers, 1992), an analog-to-digital interface card to sample the 

voltage on a potentiometer that senses the head movements (van Damme and van de Grind, 1993), 

or adaptation of the raster scan of a video monitor that enables appropriate modulation of the X 

deflection (Ono et al. 1986). These systems also restricted the shapes of motion parallax fields that 

can be presented. Only a few systems combine stereoscopic information with monocular motion 

parallax. For example, Rogers and Collett (1989) combined the fields of two black and white 

monitors with a haploscope. Similarly Ichikawa and Saida (1995) utilized polarizers and two black 

and white monitors whose fields were superimposed by beam spitters to add binocular disparity 

cues. The latter method involved off-line generation of 26 pairs of random dot stimuli stored in a 

frame memory. In this paper we show how the Rogers and Graham method can be reproduced 

with any Intel processor based PC with almost no hardware cost. An adapted joystick sampled by 



the standard game-port served as a head movement sensor. Color monitor resolution in displaying 

motion was effectively enhanced 16 times by the use of anti-aliasing, enabling to display an array 

of 1000 random dots at real time (dual-buffer) with refresh rates of 70 Hz and above. Use of the 

color monitor enabled the use of the anaglyph method thus combining the manipulation of 

stereoscopic and monocular parallax information on a single CRT display without the loss of 

speed. 

The potential power of our display is demonstrated here by a psychophysical measurement 

that was derived from the following reasoning: The subjective appearance of the depth effects 

derived from parallax information is very similar to the impression of depth obtained from RDS 

(Rogers and Graham, 1979, 1982). Moreover, there is a close similarity between the stereoscopic 

and monocular-parallax mechanisms, which is reflected by the nature of the tasks that are carried 

out by the two systems. For stereopsis, the task is to detect horizontal disparity differences 

between corresponding elements stimulating the two retinae simultaneously. For parallax, it is to 

detect differences of position or relative motion of corresponding elements stimulating the retina in 

two successive instances over time. So the parallax field over time for a single eye is analogous to 

the static disparity field for the two eyes. In viewing real 3-D objects, these two sources of 

information should be in concert. However, there are some essential differences between viewing 

real 3-D objects and a stereoscopic half image (Ritter, 1977; Lappin & Love, 1992) and egomotion 

contingent parallax (Ono et al. 1986) simulating the same object. For example, changing the 

viewing distance in stereoscopic display changes the perceived depth relations, while when 

viewing real depth, relations remain invariant in 3-D objects. The depth of the hovering segment 

increases with increasing viewing distance and vice versa. Another difference is apparent when 

you move your head parallel to a stereogram. In this case, relative shearing motion of the hovering 

segment, in the direction of head movements, is perceived. The percept of shearing motion (virtual 

parallax) is intriguing because the hovering segment is static relative to background. This study 

concentrated on the latter effect. First we wanted to know whether the perceived relative shift of the 



central hovering segment can be nulled by introducing real but inverse motion to the hovering 

segment, and second, whether these compensating shears are proportional to the disparity of the 

hovering segment. For that study we found the Rogers and Graham technique the most suitable. 

TECHNICAL REQUIREMENTS 

A successful simulation of motion parallax and disparity for the study of the given task has 

many requirements. Motion parallax must be presented with stereoscopic cues on the same 

display, or rather motion parallax must be added to a random dot stereogram. For this stimulus to 

be presented on a raster display, the display must have a high effective resolution for displaying 

motion so that the apparent motion of an individual pixel jumping to one of its temporally 

successive neighboring pixels appears smooth and continuous. The display must be updated at a 

high refresh rate of at least 60 frames per second in order for the perceived motion to be smooth, 

and the delay of the input from the head position sensor must be sufficiently small so that no 

discrepancy can be detected between the head motion and the update of the stimulus. 

The system that simulates the needed task and meets the criteria set above will be software 

based for an Intel 80386 (and beyond) microprocessor based PC compatible computer equipped 

with a video graphics array and color display, all standard equipment. Such systems are prevalent 

in research environments all over the world, and thus pose no additional cost for development: 

their adaptability offers short development time. Although these computers are versatile, it is 

difficult to meet all the requirements stated on any but the most advanced model of them. However 

it is possible to achieve the given goal by certain methods that in themselves successfully simulate 

some of the requirements. 

REFRESH RATE 

To achieve a high refresh rate of at least 60 frames per second on any of the systems, a low 

resolution video mode, 320 by 200 pixels is advisable. While the video graphics array provides 



such a video mode, and it is fast compared to any of the high resolution modes, it is not fast 

enough when accessed directly, because on most systems video memory which is accessed 

through a bus interface is much slower than main memory. To overcome the problem, software- 

emulated double-buffering is used to create an area somewhere in the main memory that is identical 

to the video memory. When needed, the double-buffer in main memory is copied to video memory 

using processor instructions that otherwise could not be used effectively (see Appendix A). 

Through the use of this method there is a chance that observable video tearing can occur, as a result 

of an updated video memory being partially redrawn on the display due to the mismatch between 

updating the electron guns' position. Nonetheless, this can be corrected by synchronizing the 

updates of the video memory with the display's vertical retrace signal (see Appendix A), the time 

during which the electron guns are moving from the bottom right of the display to the top left 

without scanning, as this allows enough time to copy the double-buffer to video memory. 

ANTI-ALIASING 

Apparent continuous motion requires small changes in the position of an object. In order 

for this to be satisfied in the simulation a high resolution display needs to be used, but the shortage 

of such displays forces one to seek a software solution. The solution is best described first by a 

simple explanation of anti-aliasing. Anti-aliasing blends high contrast areas in an image to provide 

a more natural appearance and thus seemingly higher resolution than is actually available. This can 

be adapted to the situation faced here by assuming a higher resolution than we actually have and 

anti-aliasing each displayed point based on this position. Assume that each point (in the random dot 

stereogram) is represented on the raster display by two horizontally neighboring pixels, and we 

have an array of sixteen shades of a color with linear luminance that can be adapted in the display 

of a point. As such, a virtual horizontal resolution of 5,120 pixels can be achieved by displaying 

the points in the following manner. The physical horizontal position of the pixel pair will be at the 

virtual horizontal position modulus 16, for the 16 possible shades to use for anti-aliasing. The first 



pixel in the pair will use the low 4 bits of the virtual horizontal resolution as the shade of the color, 

while the second pixel in the pair will be the complementary shade of the first (see Appendix B). 

In this manner, given a large enough viewing distance, the change of one virtual horizontal pixel is 

undetectable by the human eye. It should be noted that, while the horizontal resolution has been 

greatly enhanced, vertical resolution does not need to be stretched in this fashion, because the 

points only need to have horizontal translation. In practice, the left and right points of the 

stereogram are bitwise OR gated into the double-buffer so that duplicate pixels can be displayed 

correctly. For this the 256 available colors in the low resolution video mode are set so that the two 

shades of the colors for stereoscopic display can be represented in the upper and lower bits of the 

one byte that is needed to display a pixel (see Appendix C). Furthermore, to alleviate all possible 

delays from the display of a point, a lookup-table is created for indexing the shades of the two 

pixels in a point, based on their virtual horizontal position (see Appendix D). 

HEAD MOTION SENSING 

Head motion tracking is a key element to this simulation. The device used for head 

movement tracking must be able to convey position information without any observable delay. For 

this it was decided that the game port on the computer will be used to input the observers head 

position. For all practical purposes a standard analog joystick can be used where the stick can serve 

as a provisional chinrest. In our case, however, a 100,000 ohm 10-turn linear potentiometer was 

attached to the base of the head-movement sensing device. A chin rest was attached to an 

aluminum block with two linear bearings sliding on 9 inch parallel stainless-steel shaft providing a 

20 cm track. The block was yoked with a thread to the potentiometer. The potentiometer's 

resistance was read by the X position pins of the game port. 

The sampling rate of the game port in reading the potentiometer's resistance is dependent 

on the processor, its clock speed and the position of the potentiometer, because the delay is a direct 

result of this position. On an 486DX 50 MHz processor based system, the largest calculated delay, 



allowing for cache flushes as a result of jumps, is around 80 microseconds, and approximately 600 

unique positions are available on the track. Care must be taken to disable all interrupts when 

reading the game port, to avoid noise in the readings caused by the delay of certain interrupts firing 

(see Appendix E). Occasional noise that would be apparent had the interrupt flag not been cleared 

during a read would mostly be caused by the timer interrupt that is automatically called 18.2 times a 

second to update the system clock. Given that such minute procedures are not missed, the cost of 

production of such a device is negligible compared to 3-D head tracking systems and 

commercially available AD converters and is thus well suited for the simulation. The simulation as 

a whole is also trivial in implementation and more versatile compared to oscilloscope based 

systems. On the above mentioned system a maximal delay of 6 milliseconds was obtained by these 

software procedures (see Discussion). 

SIMULATION 

The presented components are combined to work in unison and display three parallel bars 

of random dot stereogram and thus a completed simulation. These are separated into two classes, 

foreground (the center stereogram) and background, and are further separated by an adjustable 

invisible horizontal boundary into two classes, top and bottom. Each of the classes are 

independent of each other and have several user adjustable settings. They can be adjusted in virtual 

horizontal pixel increments or physical horizontal pixel increments allowing motion from zero to 

plus or minus any setting, based on the observer's head movements. Similar manipulations of the 

disparity is possible. Colors in the disparity can be individually toggled to allow only monocular 

views, stereoscopic views or both. A second version of the system is capable of presenting 

dynamic RDS by creating several arrays of random points that are sequentially stepped through on 

a per frame basis. As presented here this simulation represents a Simple Integrative Method for 

Presenting Head Contingent Motion Parallax and Disparity Cues on Intel Processor based PCs, 



developed under Turbo C/C++ and Watcom C/C++ with the use of some inline assembler 

language. 

PRELIMINARY OBSERVATIONS 

Informal observations were made with naive observers, and staff members and authors 

highly experienced in visual psychophysics. These observations confirmed that the system behaves 

satisfactorily. A random-dot pattern portraying the classical Julesz figure (a central square in front 

of or behind the background) presented either with parallax or disparity served as a basic stimulus. 

Viewing the display monocularly gave clear depth percepts that were dependent on the polarity of 

the differential motion. When the central square moved against the direction of the head with higher 

velocity it was perceived in front of the background and vice versa. The magnitude of the perceived 

depth was scaled by the viewing distance (Ono et al. 1986). Monocular depth was most vivid for 

small differential displacement magnitudes. The depth percept was independent of head speed and 

became more ambiguous at larger differential motion magnitudes (Ono et al. 1986). Moreover, the 

monocular depth effects were not as vivid as compared to the stereoscopic depth percepts as 

checked with the following test: The basic stimulus was split into two halves where the lower part 

used static disparity and the upper part used parallax. The display was observed with red-blue 

glasses and the lower part displayed only the red points. Observers were asked to match the 

binocular depth with the monocular one. Observers could not easily perform this task reliably 

because the monocular effect was greatly diminished under these viewing conditions. Similarly, 

Rogers and Collett (1989) report on 50% reduction of depth created by pure parallax (disparity 

was set to zero), when viewed binocularly. Finally, we checked with a few observers the virtual 

parallax evoked by a static RDS viewed with lateral head movements. It was reported that the 

magnitude of this virtual parallax increases with disparity. The latter effect was measured more 

systematically in the following experiment. 



We note, however, that the monocular depth effects obtained with our system are not as 

compelling as those observed by two of us (BJ. and I.H.) in Rogers and Graham setting but were 

more consistent and stable then those reported by van Damme and van de Grind (1993), since our 

display did not show depth reversals. It seems that a more compelling monocular depth effect 

could be obtained by a considerable increase of the dots' density over the 1000 dots utilized 

(Rogers, personal communication 1996). This could be achieved in the future, without the loss of 

speed, by the use of a faster computer. Notwithstanding, our method shows much better dynamic 

performance as compared to custom low cost Head-Mounted-Tracker-Display (Forte Technologies 

VFX1 Headgear). The latter shows frequent noticeable discontinuities in head tracking. 

EXPERIMENT 

The experiment exploited the power of our method of simultaneous displaying of 

stereoscopic and head-movement-contingent parallax information. The task of the observers was 

to null virtual parallax by applying varying amounts of head-movement-contingent-parallax. 

The stimulus was a 750-point random dot pattern yielding a refresh rate of 61 frames per 

second. The random pattern was set to portray, either by parallax or by disparity or by both, a 

square-wave modulation of 1.5 cycles (3 horizontal bars). The random pattern stimulus filled the 

whole screen (17" diagonal) subtending a visual angle of 18.9° by 15.2° at the 90 cm viewing 

distance. For a given measurement, the central bar was preset to have a crossed disparity from 0 to 

32.2 arcmin in steps of 10.7 arcmin. The initial parallax introduced before each trial was random 

and ranged from ±7.2 arcmin/cm to ±14.3 arcmin/cm in 0.9 arcmin/cm increments.  Random 

horizontal noise of ±1.8 arcmin was introduced to each point in the RDS to discourage the subjects 

from focusing on physical parallax between foreground and background points, aside from being 

given explicit instructions to observe the RDS globally. Also, a new random pattern was generated 

for each trial to deter the subjects from finding points that they could focus on for the parallax 



nulling. Three subjects with good stereopsis, trained in psychophysics and aware of the aims of 

the experiment, were tested. They were given red-blue glasses to view the stereoscopic display. A 

method of adjustment was used throughout all the measurements. The amount of physical parallax 

produced to the central bar was manipulated by each individual subject, by pressing the 

corresponding keys on the keyboard in 0.9 arcmin/cm jumps, and could be either positive or 

negative, i.e. with or against the direction of the head motion, respectively. The experiment 

comprised of 40 random trials of the 4 disparities where no more than one of the same disparities 

would follow the disparity of the previous trial. All subjects reported on the perceived motion of a 

stationary hovering bar and had no problem in nulling this apparent parallax with the artificially 

introduced parallax. 

RESULTS 

Figure la, b, c depicts the results of the 3 subjects. The compensatory nulling parallax, in 

arcmin/cm of head movement, is plotted against the disparity of the central bar. All 3 subjects' 

results show a negative monotonic but decelerating decrease of the compensatory parallax. 

Furthermore, for all subjects and for zero disparity trials (catch trials), slight positive parallax was 

required. This effect is attributed to possible fatigue of disparity sensitive cells that occurred in the 

30 min session (see Discussion). 

DISCUSSION 

A display system is presented that replicates the basic Rogers and Graham method of 

displaying head movement contingent parallax field added with independent binocular disparity 

field. The system is very adaptable and can be easily modified to include actual 3-D representation 

of an RDS with rotation based on the user's head movements, plotted perspectively or not. While 

this would require X andY deflections of points, the anti-aliasing effect could be expanded to 
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allow for such motion, in monocular and stereoscopic displays. Also, with the rotation 

and projections of an RDS, dynamic disparity can be gained without loss in performance. 

The anti-aliasing technique is required to display pixels so that subtle motion appears 

natural. Since a low resolution video mode is displayed, direct pixel jumps would create a jerky 

motion appearance at all but very fast head movements. This extra processing time needed to 

display an anti-aliased pixel is negligible and is very well suited for the purpose. 

The current maximum delay between the start of a given sampling of the game-port and 

update of the screen is less than 6 milliseconds. This delay was measured by simultaneously 

sensing the game-port sampling pulses and the appearance of motion on the screen (sensed with a 

photodiode). Practically, the delay can be reduced by decreasing the number of points, increasing 

the speed of the computer and video card used, or both. There is a threshold after which no 

significant delay reduction can be gained by reduction of the number of points, and this threshold 

can be attributed to the time taken to swap the double-buffer. That is, when the time required to 

plot the points from the double-buffer is much less than the double-buffer swap time, the delay 

cannot be decreased significantly. This threshold for the previously mentioned processor is around 

100 points and the resulting refresh rate comes to around 75 frames per second, with no vertical 

retrace synchronization. Furthermore, increases in processor speed and type, such as using 

Pentium 100 MHz processor and a faster video card, would decrease delay time considerably, to 

possibly around one or two milliseconds with a 1000-point RDS. 

From a perceptual standpoint, the small delay inherent in our system is not significant 

because it is smaller than the refresh rate. Moreover, the motion of the subject's chin is linear, as 

dictated by the sliding chinrest. However, the head may tilt somewhat, since the forehead is not 

restrained by the chinrest, and may affect the motion trajectory of the subject's eyes which is the 

more relevant parameter. A dental bite bar method would eliminate this problem. We foresee that 

the future use of an advanced head-mouse prevalent in commercial virtual reality displays might 
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improve the temporal response of the system with the advantage of extending the head motion 

sensing to 3-D. 

Even though the virtual parallax evoked by RDS by lateral head movements can be readily 

perceived, to the best of our knowledge this effect has not been investigated systematically. The 

system described above which combines the display of disparity as well as head movement 

contingent parallax enables quantitative measurement of the effect. Our results show that the virtual 

parallax is a monotonically increasing function of disparity, in agreement with informal observation 

and as confirmed by the amount of real opposite parallax that was required to null it. Interestingly, 

the compensatory parallax does not show a linear relationship with disparity. This is contrasted to 

what would be expected from pure geometrical considerations applied to real 3-D objects. In the 

RDS case, however, increasing the cross disparity decreased the perceived egodistance of the 

central bar while the background remained at the screen level. Had the stimulus been a real object, 

the predicted parallax would be an inverse function of egodistance, requiring increasing 

magnitudes of counter-parallax to annul the real parallax. Note that the compensatory parallax for 

all 3 subjects show small positive average value of 0.135 arcmin/cm for the zero disparity case. 

This is an intriguing effect since no virtual parallax should be observed in zero disparity. This 

effect may be attributed to the adaptation of the disparity tuned unit that were stimulated 

continuously during the whole experimental session. Indeed, the latter conjecture needs more 

empirical support. 

ACKNOWLEDGEMENTS 

We are indebted to Alex Kononov for his contribution in early development of the 

software; to Richard Payne and Patrick Grace for constructing the head movement sensor device; 

and to Carol A. Esso for editing and competence in word processing. This study was supported 

by AFOSR Grant # 93-NL-165. 

13 



REFERENCES 

Ichikawa, M. and Saida, S. (1995). Interaction of binocular and motion disparity depth cues at 

near threshold level. Invest. Ophth. and Vis. Sei. 36, 4, 3053. 

Julesz, B. (1960). Binocular depth perception of computer generated pattern. Bell System 

Technology Journal 39, 1126-1162. 

Julesz, B. (1971). Foundations of Cyclopean Perception. University of Chicago Press, Chicago. 

Lappin, J.S. and Love, S.R. (1992). Planar motion permits perception of metric structure in 

stereopsis. Perception and Psychophysics 51, 1, 86-102. 

Ono, M.E., Rivest, J. and Ono, H. (1986). Depth perception as a function of motion parallax and 

absolute-distance information. Journal of Experimental Psychology 12, 3, 331-337. 

Ritter, M. (1977). Effect of disparity and viewing distance on perceived depth. Perception and 

Psychophysics 22, 4, 400-407. 

Rogers, B.J. and Collett, T.S. (1989). The appearance of surface specified by motion parallax 

and binocular disparity. The Quarterly Journal of Experimental Psychology 414, 4 697- 

717. 

Rogers, B.J. and Graham, M. (1979). Motion parallax as an independent cue for depth perception. 

Perception8, 125-134. 

Rogers, B.J. and Graham, M. (1982). Similarities between motion parallax and stereopsis in 

human depth perception. Vision Research 22, 261-270. 

Rogers, S.R. and Rogers, B. (1992). Visual and nonvisual information disambiguate surfaces 

specified by motion parallax. Perception and Psychophysics 52, 4, 446-452. 

Van Damme, W.J.M. and Van De Grind, W.A. (1993). Active vision and identification of three 

dimensional shape. Vision Research 33, 11, 1581-1587. 

14 



APPENDIX A: VIDEO SUPPORT 

In order to swap the double buffer in a timely manner, it is best if double word moves are 

performed so that the reading from main memory can be as effective as possible. Although the 

write to the video memory can only be accomplished in bytes because of hardware limitations, it is 

best to leave the task of breaking the double words to bytes to the processor. The following code 

fragments, a mix of C and assembler language, are the ones used to clear and swap the double 

buffer without vertical retrace synchronization. 

int *buffer; 

int *video; 

declare the double buffer 

and video buffer (which is 

located at AOOOh:0000h) 

(clear the double buffer) 

mov edi, [buffer] 

mov ex,1600 0 

xor eax,eax 

eld 

rep stosd 

move buffer address into 32 bit 

destination indexing register 

assign number of 32 bit words to 

counter register 

zero eax (source value) 

clear the direction flag (edi is 

incremented) 

and store count words of value from 

eax into address from edi 

(display the double buffer) 

mov edi,[video] 

mov esi, [buffer] 

mov ex,16 0 0 0 

eld 

rep movsd 

video into destination register 

buffer into source register 

count of 32 bit words 

direction flag clear 

move 
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With retrace synchronization the double-buffer code fragment will look the same except the retrace 

wait code added in front, as such. 

mov  dx, 0x3 da 

waitend: 

in al,dx 

test al,8 

jnz waitend 

waitbegin: 

int al,dx 

test al,8 

jz waitbegin 

mov edi,[video] 

mov esi, [buffer] 

mov ex,16 0 0 0 

eld 

rep movsd 

move video port address into 

register dx 

label for jump 

get byte from the port 

check to see if electron guns are 

scanning 

if not, loop until they scan 

label for jump 

get byte from port 

check to see if electron guns are 

scanning 

if yes, loop until they stop 

scanning and begin their retrace 

same as before 

APPENDIX B: ALIASED PIXEL OUTPUT 

The anti-aliased point code is simple and very efficient as it uses a lookup table to find the 

shades for the two pixels to be drawn. There need to be two functions, one for the left and one for 

the right point, since the two shades for stereopsis are set so that they can be represented in either 

the lower or upper 4 bits of the pixel byte. In this manner the two pixels need only to be ORed into 

the double buffer without any preprocessing step. 

#define ALIAS 16 

int *buffer; 

define for number of positions 

between two pixels 

double buffer declaration 
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int  red_lookup[ALIAS]; 

int  blue_lookup[ALIAS]; 

lookup tables to return two bytes 

of intensities 

based on the intermediate 

(fractional) position between pixels 

(display point with a shade of red) 

mov eax,ebx 

and eax,15 

shl eax,2 

mov eax, [red__lookup+eax] 

shr ebx,4 

add edi,ebx 

add edi, [buffer] 

or [edi],ax 

ebx has the x position placed 

there by the compiler 

mask lower 4 bits to get fractional 

part 

shift for index into 16 bit array 

get 4 bytes (faster than getting 2) 

get integer part of x position 

add to destination index (which has 

the y position index into the 

buffer) 

add the buffer address to the 

destination index 

write out the 2 bytes for the 

aliased pixels 

(display point with a shade of blue) 

mov eax,ebx 

and eax,15 

shl eax,2 

mov eax, [blue_lookup+eax] 

shr ebx,4 

add edi,ebx 

add edi, [buffer] 

or [edi],ax 

same as above except using the other 

array 
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APPENDIX C: COLOR SETUP 

The two linear luminance shades, of red and blue or red and green for stereoscopic views, 

can be calibrated using a luminance meter. They must be ordered so that the upper and lower bits 

of a display byte, and combinations of it, can contain all the possible combinations of the red and 

blue or red and green mixes. The following shows how the color map for the given video mode 

can be set to contain the correct combination of shades. 

(function to set a given index in the color map to a given red, blue and green component) 

void rgb(int c,int r,int g,int b) 

{ 

outp(0x3c8,c) 

outp(0x3c9,r) 

outp(0x3c9,g) 

outp(0x3c9,b) 

output color index to the index port 

and red, green & blue color values 

to the data port 

sequentially 

return; 

} 

(assuming that the array red and blue are already filled with the correctly calibrated values of the 

required shades, the setup of the color map is simple) 

ttdefine ALIAS   16 

int  red[ALIAS],blue[ALIAS] ; 

int   r,b; 

for   (b=0;   b<ALIAS;   b++) 

for   (r=0;   r<ALIAS;   r++) 

rgb(b*ALIAS+r,red[r] ,0,blue[b] ) ; 

loop for blue 

loop for red 

blue is upper 4 bits 

of color index 

red is lower 4 

18 



APPENDIX D: LOOKUP TABLE INITIALIZATION 

The lookup table initialization is a simple task that is performed before any points are even 

attempted to be displayed. The code fragment presented needs no optimization for speed, as it is 

only executed once every time the simulation is run.   The loop below sets to two tables to their 

correct values 

#define ALIAS  16 

int red_lookup[ALIAS]; 

int blue_lookup[ALIAS]; 

int a,b,i 

integer array lookup tables 

for pixel intensity values 

for (i=0; i<ALIAS; i++) 

{ 

a = ALIAS - i - 1; 

b = i; 

intensity value for first pixel 

intensity value for second 

(neighboring) pixel 

} 

red_lookup[i]   =  a   |    (b*256); 

blue_lookup[i] = a (b*256) 

value 1 is lower 8 bits, 

value 2 is upper 8 bits 

* ALIAS;    same as red except 

shifted by 4 bits 

(the two multiplies by 256 are needed to left shift a given value to the following byte in a word or 

double word, equally the multiply by ALIAS is for the left shift of 4 bits in a byte) 

APPENDIXE: INPUT HANDLING 

To avoid delays, and thus noise, in reading the game port for the head position 

information,   it  is  imperative that  interrupts  be disabled,  and the loop  for the read  to be 

19 



accomplished as fast as possible for greater accuracy. Below is the section of code that may be 

used to read the game port and obtain head position information. 

(the result of the read is placed in register EBX) 

cli clear interrupt flag so no 

interrupts bother us 

xor ebx,ebx ' zero ebx, used for the delay count 

mov dx,0x201 joystick port x deflection 

out dx,al start the timing loop 

jump: label 

inc bx increment our counter 

or bx,bx check for overflow 

je done if overflow we abort 

in al,dx get byte from the joystick port 

and al,l check for cleared delay flag 

jne jump if not clear, loop 

done: label 

sti allow interrupts again 

20 
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ABSTRACT OF THE THESIS 

Spin Theory & Indeterminate Scale Problem 

by Alex Kononov 

Thesis Director: Itzhak Hadani 

A fundamental problem in the study of space perception concerns how a mobile ob- 

server acquires information about the metric structure of objects from a sequence of 

projections. The earlier seminal work by Hadani et al. [22] derived the optic-flow equa- 

tion of a general point for an eye undergoing pure rotations. It was suggested there 

(without showing an explicit solution) that utilizing at least three different points and 

two views, the distance of object points and the motion parameters of the eye can be 

uniquely recovered. To substantiate these claims, current thesis shows derivation of an 

explicit solution for the original flow equation in the discrete case (3 points and 2 views) 

showing that the structure-from-motion problem can, in principle, be solved in metric 

terms. Additional solution is also derived in the differential approach which is appli- 

cable to a single point. Both solutions were checked with a computer simulation and 

have shown a remarkable degree of accuracy in a noise-free system, high sensitivity to 

noise of the discrete solution, and a low sensitivity to noise for the differential solution. 

The model was then further extended to the six degrees of freedom required to account 

for general motion (rotations and translations). Extended flow equations were derived 

which produce only partial solution. A series of additional biologically plausible con- 

straints were, therefore, identified and used to produce analytic closed form solution. 



The solutions support the Hadani et ai. model which regards space perception as a 

navigation process where position and size constancy are preserved by reconstructing 

the 3-D world in terms of object's space coordinates. The significance of intrinsic metric 

scale in visual perception and additional biologically plausible constraints for general 

motion are discussed. 
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Chapter 1 

Introduction 

1.1    Overview 

This thesis deals with the problem of recovering the depth (distance) of object's points 

and the motion parameters of the eye from the optic flow projected by a stationary 

environment onto a moving eye. Bruss and Horn [1] call this capacity passive navigation 

and identify several approaches used to address the issue. These can be classified into 

three main categories: the discrete approach (e.g., [22, 30, 29, 31, 34]), the differential 

approach (e.g., [10, 27]), and the least square approach (e.g., [1, 33]). Works in all three 

categories show that the optic flow depends upon the six motion parameters of the eye 

and the structure of the object. Works in the discrete and differential approach are 

also characterized by analyzing the minimum conditions under which an ideal observer 

can solve the passive navigation problem. These minimal conditions are given in terms 

of number of points and views. The most rigorous solution was advanced by Tsai 

and Huang [34]. They show that 7 points and two views are required to recover the 

distance and the motion parameters (up to a scalar in the translation vector). Longuet- 

Higgins and Prazdny [10] show that the structure of object and motion parameters can 

be recovered from a single point and its neighborhood (again, up to a scalar in the 

translation vector). The later model was criticized by Bruss and Horn [1] (also in [14]) 

as being incorrect except for a special case. 

Excluding the Hadani et a!, model, all the other models yield relative depth per- 

ception because their solution is up to a scalar. In contrast, the Hadani et al. model, 

now called the SPIN theory (SPIN for Space Perception In Navigation), suggests that 



in addition to the eye's motion parameters, the distance of object's points from the eye 

can be determined uniquely from the optic flow. This is not a trivial difference because 

the metric (absolute) distance extraction is considered by earlier works as impossible 

(e.g., [36, 1, 25]). Furthermore, the SPIN theory suggests an intrinsic "hardwired" 

measure - the radius of the eyeball - as a metric unit for monocular depth perception. 

To substantiate this suggestion, this thesis presents two explicit solutions and computer 

simulations of the SPIN theory's optic flow equations for pure rotations [22]. The model 

is then extended for the general six degrees of freedom (motion consisting of rotations 

and translations). 

To pinpoint the major difference between the earlier works and the SPIN theory 

approach, we concentrate on passive navigation. We raise here the question: Given that 

the visual system has a passive navigation capacity, what kind of perceptual experience 

would be predicted by the computational models when the input of the system is far 

below the minimal conditions required for a solution? The answer to this question is 

that no solution will be obtained and the system will fail to stabilize the point. From 

a perceptual standpoint, the appearance of the point would be jittery, reflecting the 

unsteadiness of the eye. It turns out that such a test is easy to administer. Take a 

single static point-light-source positioned l-2m away from your eyes in a light proof 

room. Fixate the point when your head is fixed and turn off the lights to make the 

room, otherwise, dark. For most observers the point appears static for at least several 

seconds. Other observers may perceive it stationary for up to 30 minutes [21]. Also, 

you may notice that even when the point is seen starting to move, its motion shows a 

substantial amount of stability because the movement is smooth and slow and certainly 

does not reflect the unsteadiness of the eye in space which is known to exist even 

when we fixate. The interesting question here is why the illusory motion does not 

start immediately but only after a latency interval of several seconds. This question 

is relevant because all current models predict that the autokinetic movement (AKM) 

should be shown promptly at the beginning of the dark interval because a single point 

is below the required minimal conditions. Also, if we take as a "view" a single visual 



sampling time, which is estimated to be 20-30 msec [17, 21, 2], then 10 seconds of 

observation, in the differential approach, may be considered as 500 successive views. 

Since for most observers this illusory motion is not shown for at least 10 sec (which 

provides enough views but not enough points) we conclude: first, that the passive 

navigation problem is somehow solved by the visual system even for a single point. 

Second, that all earlier models are inappropriate to account for these minimal stimulus 

conditions, particularly for the stability of the point in the latency interval. 

To account for stability of a single point, we will show that by making a distinction 

between a mathematical point and a visual point, the eye's movement parameters and 

the distance of the point can be uniquely recovered from retinal information. All earlier 

works implicitly assumed that the location of a point is presented to the retina as 

a point intensity function (Dirac delta function) which, in principle, has no spatial 

extent. The reality is that the eye is a composite optical body which includes the 

cornea, the aqueous humor, the crystalline lens, and the vitreous humor, each of which 

is an imperfect optical medium. This implies that the point intensity of light is subject 

to refraction, diffraction, and scattering effects. Taking all these effects together, the 

optical impurities of the eye can be described by two-dimensional Gaussian function of 

light intensity, known as the physiological point spread function [35]. 

The point spread function used to account for the propagation of the light through 

the composite optical medium of the eye is assumed here to be continuous and, at 

least, twice differentiable. Therefore, a spatial point that may have no effective spatial 

extent, say a star, actually has retinal projection with spatial extent that depends on the 

particular cut of the point spread function with the retina. The shape of the cut (blur) 

depends on the light sensitivity of retinal cells and on the location of the projection on 

the retina. Thus, it has the shape of a circular disc near the optical axis, and of an 

ellipse at the periphery (Figure 1.1). 

If we take the eye as a dynamic pinhole camera without a shutter and assume that 

the visual scene is comprised of a single luminous spatial point, then for two successive 
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Figure 1.1: A single spatial point projects onto the eye a Gaussian light spread function, 
creating a small movement field 



time instances t, and t + At, one can extract, from the positions of the two cuts of 

the point spread functions, a small angular velocity field at t. Based on the assumed 

continuity of the intensity point spread function, we further assume that the small 

angular velocity field is at least twice differentiable with respect to space. 

Furthermore, common to most approaches mentioned above, is the use of the engi- 

neering definition for the optical flow which locates the rotation center of the camera 

at the pinhole [10, 1, 34]. Thus, for pure rotations, the motion field in these models is 

neither sensitive to the 3-D structure of object's points nor to their distance. Excep- 

tional in this respect, is the SPIN theory approach that separates the entrance pupil 

(pinhole) from the center of rotation of the eye [3]. As a result, rotations of the eye 

(except for rotation about the optical axis, called torsion) produce for the pinhole a 

translation. Consequently, and in contrast to the common view, the retinal motion 

field is dependent on the distance and the structure of the objects even for pure eye 

rotations. 

In this thesis we will examine the details of the indeterminate scale problem. We 

then describe how the problem is solved directly when motion consists of pure rotations 

(this material was also published in JOSA [16]). A computer simulation that was 

developed based on this model will then be used to predict the behavior of the system 

during underdetermined conditions (single point that results in AKM movement after 

some latency period). Next, the model will be extended to the general motion: rotations 

and translations. Since pure rotations are a special case of the general motion, only the 

differences introduced by translational components will be discussed. Finally, we will 

look at psychophysical implications of the SPIN model in light of passive navigation. 

1.2    Indeterminate Scale Problem 

Tracing the basic image formation, we observe that when a visible object is present 

in front of an eye it produces an image on the retina. Before looking at the details 

of this process and for the consistency of the description, let us adopt some formal 



notation. First, let there be a three dimensional coordinate system attached to the 

world, such that any point in space can be described by a set of three numbers, say 

[X,Y, Z]. Next, we will need a coordinate system attached to the observer, or, more 

specifically, to the observer's eyeball. Any point in space, [X, Y, Z], will have then a 

corresponding representation in observer's coordinate system, say [X',Y',Z']. (Unless 

specified otherwise, the convention adopted here will always use the unprimed system 

for the system attached to the world and the primed system for the system attached 

to the observer.) Clearly, if the exact relationship between the two coordinate systems 

is specified (it is known where the origin of one is located relative to the origin of the 

other), then a representation of a point in one coordinate system can be easily converted 

to the the corresponding representation in other system. Thus, for example, if we know 

the location of the object relative to the observer, and we know where observer is in 

space, we can compute the exact location of this object in space. Conversely, knowing 

observer position in space and location of some point in space, we can compute point's 

position relative to the observer. 

The two most widely used constructs that formalize the process of image formation 

are orthographic and perspective projections. The simplest, the orthographic projection, 

maps a point in space to a location on the image plane (eye's retina) by projecting 

the point along the line parallel to the optical axis, or the line that is perpendicular to 

the retina. For the remainder of the discussion, we will adopt the convention that the 

observer's Y axis is the optical axis. Then, for every visible point in space, [x',y',z'}, 

there is a projection on the retina, - [x", z"], where x" = x' and z" = z'. 

A perspective projection places an infinitely small pinhole along the optical axis 

some distance away from the retina. Then, every point in space, [x',y',z'}, is projected 

onto the image plane by following a line from that point, through the pinhole, and onto 

an image plane, say [x",z"]. It should be clear that only points along the optical axis 

will have x" = x' and z" = z' (same as in case of orthographic projection). Otherwise, 

if the pinhole is located at distance c from the image plane, the projection is: 



*" = $ (L1) 

z" = % (1-2) 

A common property of either projection technique is that a three-dimensional point 

in space is reduced to a two-dimensional point on a plane. As a corollary, any single 

point on the image plane can correspond to a projection to infinitely many points in 

space. As an example, consider a set of points that have identical [x;, z'\ coordinate, but 

are located at a different distance from the image plane. All these points will be mapped 

to the exact same [x", z"] location when using orthographic projection. Similarly, by 

adjusting [x',z'} by a common factor for different distances, we get an infinite set of 

points with the common [x",z"\ projection: [x',y',z'], [2x',2y',2z'], [3x',3y',3z'], etc. 

Therefore, it is impossible to derive a unique distance to a visible point just from the 

projection onto a flat plane. 

A great deal of useful information can be extracted from time-varying images. At 

first, it might seem foolhardy to consider processing sequences of images, given the 

difficulty of interpreting even a single image. Curiously, though, some information is 

easier to obtain from a time sequence. To see this clearly, consider two images formed 

by a single stationary point in space from two different viewing angles. Although it is 

impossible to obtain the depth information from the individual projections, the two of 

them are enough to solve for the distance to the point if we know the exact displacement 

of the observer. Formally, this means that knowing the base of a triangle (displacement 

of the camera), and the direction angles to the point (that can be computed from the 

projections), we can use triangulation to estimate the distance to the point. 

Two major difficulties become evident here. First, there may be no information 

about the observer's displacement, - a classic problem of passive navigation when there 

is no extra-retinal (active) signal present. Second, since a typical visual stimulus is not 

made of a one single point, but instead a huge, theoretically infinite number of visual 

points, identifying projection of any one individual point from view to view becomes 



a non-trivial task. The latter, also known as correspondence ■problem, is addressed 

elsewhere [28, 4, 32, 20, 14]. Some of these references describe methods that are more 

applicable to finding correlation between areas (or expected futures, such as points or 

lines, for example) in the stereo-pairs, but replacement of spatial domain with time will 

make them applicable for finding correlation between views. Whichever method is used, 

it creates a field of brightness patters with some instantaneous velocity associated with 

every visible point, also called the optical flow. Here we will proceed under assumption 

that these velocities are known and will concentrate on the former issue, - the passive 

navigation, starting with pure rotations and then proceeding to the general case. 



Chapter 2 

Three Degrees of Freedom: Pure Rotations 

2.1    The Retinal Flow Equations for Pure Rotations 

The following sections will illustrate that, contrary to the popular view, a metric solu- 

tion can in principle be obtained by a single eye when the entire motion of the observer 

is constrained to arbitrary rotations. The eye is modeled by a sphere, with the radius 

c. An infinitely small pinhole is attached to the sphere and, therefore, gives a perspec- 

tive projection discussed earlier. It is important to note that, while the radius of the 

eyeball, c, and the optical flow (or instantaneous velocity associated with each point in 

the image) are known a priori, neither the distance, nor the complete characteristics of 

the rotational motion of the observer are given. Therefore, the two specific goals that 

a passive system must fulfill are: a) compute a metric distance to the visual points and 

b) compute the motion of the eye in space. The analysis of this problem starts with 

the analysis of the optical flow, the only information available to the passive eye about 

the external world. 

Details of the assumption made and the logic behind the derivation of the flow 

equations are given elsewhere [3, 12]. Briefly, Let X, Y, Z and x(t), y(t), z(t) be 

two Cartesian coordinate systems with a common origin coinciding with the center of 

rotation of the eyeball, as shown in Figure 2.1. X, Y, Z is fixed to the head (and since, 

by assumption, the head is fixed in space, this system is also fixed in space). Let x(t), 

y(t), z(t) be a moving system attached to the eyeball where the y axis coincides with 

the optical axis. Each static object point R = [X,Y, Z] can be expressed in terms of 
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Figure 2.1: Definition of systems of coordinates in the SPIN theory: X, Y, Z are fixed 
in space; x, y, z are attached to the eyeball. Note that the pinhole (pupil) does not 
coincide with the center of rotation of the eye's system. 
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the eye system coordinates r(i) = [x(t),y(t), z(t)\ by the linear transformation 

r(i) = M(t)R (2.1) 

where M(i) is 3 X 3 orthogonal transformation matrix (MT*M = I). Having this map- 

ping in mind x(t), y(t), z(t) can additionally be mapped onto retinal polar coordinates 

(Figure 2.2) which are also given in terms of the eye system by 

6    = y (2.2) 
yjx2 + (y - cf + z2 

<j>   =   tan-1^) (2.3) 

where c is the radius of the eyeball.   A third coordinate p is denned as the distance 

between the pinhole and the location of the object, where: 

p = y/x* + (y- cf + z*. (2.4) 

Using equations (2.2)-(2.4), the inverse, mapping of the retinal projection points 

onto surface points is given by 

a 
x    =   psin-sin<j> (2-5) 

y   =   c + pcos- (2.6) 
a 

z   =   psin-cos<f> (2-7) 

Note that the transformations (2.2)-(2.4) and (2.5)-(2.7) are not time dependent because 

they are carried out within the eye's system. 

The elements of the matrices M(i) are functions of the directional angles of the eye 

in the socket. In principle, three independent parameters A(i), ß{t), v(t) are required 

to define the relative position of eye and head system. However, Listing and Donders' 

laws of eye movements mean that actually two parameters \{t) and p.(t) are utilized by 

the visual system [23]. For the present solution we adopted this interpretation of the 
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Figure 2.2: Definition of retinal projection of surface points. 

x,y,z    are the coordinates of a spatial point transformed into the 
eye's notation; 

d,(j>     are eccentricity and meridian angles, respectively; 
p,po     are distances of a surface point from the pinhole and from 

the origin, respectively; 
c       is the radius of the eyeball. 
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two laws and used the following matrix M: 

• cos2fj.cos\ + sin2fi    -cosfisinX   cosfxsinfi(cosX — 1) 

M = sinXcospi                 cosX                 sinfisinX 

sinficosfi(cosX - 1)    -sinfisinX    sin2ficosX + cos2fi 

(2.8) 

m where X and /x are the two directional angles. Since the object's points are stationary, 

the absolute derivative of r with respect to time is: 

dr 
— = r + uxr = 0                                                (2.9) 
ctt 

# 
where r is the time derivative of r in terms of the eye system, and UJ is the angular 

velocity vector of the eye given in terms of the eye-system notations.  From equation 

(2.9) we obtain: 

x + ujyZ — ujzy — 0 

y - uxz + uzx — 0 

z + u)xy-VyX    =    0 

(2.10) 

(2.11) 

(2.12) 

Differentiating (2.5)-(2.7) with respect to time, substituting for x, y, z in (2.10)- 

(2.12) and eliminating p [3] we get 

/        2ccos%\ 
6   =      2-|    (wzsin<f) - u}xcos(j>), 

e 
<t> 

pcos^ + c 
(uxsin(f> + uzcos<f>) — (jjy. 

(2.13) 

(2.14) 

These flow equations establish the relationships between the components of the 

retinal movement vector <^>, 0 and: a) the three components of the angular velocity 

vector oj, and b) the distance p of the object point. The generality of the equations 

stems from the fact that these analytic relationships hold at any retinal location. The 

magnitude c which represents the radius of the eyeball is taken as the metric unit of 

the solution. 
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2.2    Solution of the Flow Equations in the Discrete Approach 

Equations (2.13) and (2.14) are now solved for the discrete case. We first define two 

new parameters A and B as: 

A   =   uxsin<j> + ujzcos(j), (2.15) 

B   =   L>zsin<f> - ujxcos<p. (2-16) 

We substitute A and B in (2.13) and (2.14). Then, we isolate c/p in each of these 

equations and equate both expressions for c/p. These manipulations yield the following 

single equation in A, B and u)y: 

^ = *fi*-AHh* (2-17) 

The ratio ^ is: 
A      (jxsin<f> + uzcos<f>      tancj) + 

B      ujzsin(f) — ujxcos(f>      ^tarMJ) — 1 
(2.18) 

""'   —     uxtan^-(sin<f>i + cosfc—) - fa, (2-19) 

Substituting A and jj in (2.17) yield for any given point i: 

{tank + %)0i ,     ^ u: 

(^tantpi - l)sin0i 2 ux 

i = l,2,---,N. 

Equation (2.19) comprises a set of N equations in 3 unknowns, UJX, LJV, UJZ, but is given 

in terms of the two parameters ^ and ux. Since cjy is a common unknown, the right 

side of equation (2.19) holds for any image point. If we consider two such points we 

can write an implicit equation in ^f- for any two different points i, j: 

"j       (Pt + sin8i(2*-tarul>i-l)        sin6j(^tan4>"-l) 
ux =      ' ,     "■ 9. (2.20) 

(sincpi + ^cos(j>i)tan^ — (sincpj + ^cos<f>j)tan-£ 

i=l,2,---,N;j=l,2,---,M;N^M. 

Since ux is also a common unknown, equation (2.20) can be further written as a single 

equation for three different points i, j, k with the ratio ^ as unknown. This yields a 

fourth order polynomial in &£. Solving the polynomial yields 4 roots. The root that, 
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when used to calculate p, gives a maximum positive value is the correct solution. The 

computer simulation described below has shown that this solution is very sensitive to 

noise measurement. To overcome this difficulty we now turn to a linear solution of the 

flow equations for a single visual point. 

2.3    Solution of the Flow Equations in the Differential Approach 

To obtain a solution for a single point we assume that the surface of objects of vision 

is composed of densely packed discrete points which have no extension. Since each 

individual point, by definition, has no structure, the light emanating from this point, 

projects on the retina due to the optical impurities of the eye, a Gaussian intensity 

function that has a spatial extension. Thus, when the point starts to move across the 

retina due to eye movements, a small movement field is created which eventually can 

be extracted by retinal and brain mechanisms [3, 20]. To derive an analytic solution for 

that small movement field, we first substitute A and B into equations (2.13) and (2.14) 

and differentiate the result with respect to 9 and cf> under the assumption pg = p^ = 0. 

This produces: 

c 9 
9g    =    —Bsin-, (2.21) 

P 2 

=   1A , 

A      /       c      9 

(l + leas'-) , (2.22) 

(i+H)' (2-23) 

{cos9- + £) . (2.24) 

2sin2§ 
B 

sin\ 

Equations (2.13)-(2.14) and (2.21)-(2.24) comprise a set of 6 independent equations that 

provide more than is required to solve for the three unknowns p, A, and B. Furthermore, 

by taking the second spatial derivative of $ with respect to <f>, we arrive at the following 

equation for the fourth unknown: 

- ojy = 0 + ^. (2.25) 
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Explicit expressions for the other three unknowns, given in terms of the observable 

• quantities, are: 

ce.ee                                fn „„, 
p   = —sin ccos-,                                         (2.26) H             20B      2             2'                                         y       ' 

• 
A   =    °* + W8cot0-,                                              (2.27) 

2      e     2'                               x     ' 

B   =    - + 0ecot-.                                                    (2.28) 

Solving for A and B, ux and uz can be easily recovered from (2.15) and (2.16). 

# Equations (2.25)-{2.28) establish a set of 4 linear equations which have a unique so- 

lution. Indeed, these equations were derived under the assumption that the individual 

object's point has no structure. Thus, we could set to zero the two unknown quanti- 

ties pe, p<j> that otherwise would appear in (2.21)-(2.24). This assumption is entirely 

plausible when we consider points that are relatively far from the pinhole (stars) but 

yields an approximate solution when the points are at a close distance from the pinhole. 

However, in Appendix B we show a more general solution that can solve the problem 

for close points which have a structure, or alternatively, when the object of vision is a 

continuous surface. 

2.4    Computer Simulations of the Two Types Solutions 

The computer simulations focused on the kinematical aspects of the passive navigation 

process. For each small rotation of the eyeball 4 unknown magnitudes were calculated: 

The 3 components of the eye's angular velocity vector w, and the distance(s) of object 

points. These unknowns were derived on the basis of the observable quantities 9, (/»and 

their spatial derivatives. 

In order to carry out the simulations for prolonged durations which are composed of 

many consecutive small random steps, we derived the relations between the components 

of u) that are calculated from the optic flow and the momentary orientation of the eye 

relative to the head. The latter is given by the two position angles A, /x. This is done 
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by solving the differential equation: 

B = ftB, (2.29) 

where * ~ 
0 -w, Wy 

Uz 0 -Wx 

-üJy Wx 0 

ü=      UJ2       0      -ux (2.30) 

-ÜJy       u)x 0 

Utilizing a transformation matrix M(i) that is given in terms of two position angles 

means that this aspect of the simulation emulated the Listing and Donders' laws of eye 

movements. One meaning of these laws is that uy is a function of u;x, uz, X and /z. We 

note, however, that to simulate a pure passive navigation, u)y can be computed directly 

from equations (2.19) or (2.25). 

Simulations of the discrete and the differential cases were written in C language and 

run on a SUN Sparc Station 2. A flow chart of the simulation of the differential linear 

case is shown in Figure 2.3. After the input stage i — 0, every step has several stages 

as described below: 

Input. Feeding the computer with the spatial coordinate of the point(s) and the 

components of the eye's angular velocity vector (first step only). 

Projection onto the retina of spatial point(s). The spatial coordinates of point(s) 

are transformed by the (true) matrix M to the momentary eye's system Cartesian 

components. The latter are then transformed to their retinal polar equivalent notation. 

The components of the true rotation vector OJ embedded in A and B, are used to update 

the elements of the transformation matrix M to be used in the subsequent step. 

Processing of the retinal information. The optical flow equations are solved to obtain 

the predicted p' and u>'. In turn, these are used to update the elements of the (predicted) 

matrix M'. 

Projection out in space. The predicted distance p' and the retinal polar coordinates 

6 and <p are transformed to the eye's Cartesian coordinates. The later are "projected- 

out" to their predicted spatial coordinates by applying the inverse of the matrix M'. 
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Eatimata 
angular valocitiaa 
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Figure 2.3: Flow chaxt of the simulation of the differential linear case. Unprimed 
notations mark true magnitudes; primed notations mark the predicted magnitudes. 
For details see text. 
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Thereafter, the computer generates a new random rotation to the eyeball. 

Note that in the process of 3-D reconstruction, the algorithm does not end up only 

with two consecutive frames, but involves many small random steps. These random 

steps are used to calculate the new position of the eyeball by updating the elements 

of M and M'. Note that M represents the actual position of eye in the socket and 

is used to project the point(s) onto the retina. The inverse of M' is used to project 

the point out in space. Thus, small discrepancies between the true and the predicted 

values, in any given step, are integrated across many consecutive steps to create a large 

orientation error in M'. This may lead to the accumulation of orientation error in 

the projection-out phase that results in apparent movement of the reconstructed static 

point. In this respect, the simulation emulates the SPIN theory's conception about the 

nature of the autokinetic effect (see below). 

All types of the above simulations were run for up to 300,000 consecutive steps 

to check for: a) the correctness of the mathematical derivations, b) to determine the 

baseline of the computational error in a noise-free system, and c) to evaluate and 

compare the noise immunity of the different algorithms. Note that the use of small 

rotations emulates the small excursions of the eyeball that occur during fixation. These 

include slow drift, tremor and microsaccade [1]. They certainly do not simulate large 

saccadic eye movements (in this case the elements of M' are assumed to be updated 

by extraretinal signals). Note also that each step is roughly equivalent to 20 msec of 

fixation time, and 3600 steps are equivalent to one minute of fixation. 

The accuracy of all simulations in a noise-free system was remarkably high. Even 

after 300,000 steps the computational error of all the predicted parameters did not ex- 

ceed O.OOlerror has shown that the most robust solution is the differential linear (Table 

2.1). Maximum errors in the calculated distance were proportional to the measurement 

error at all distances (up to 1 Km). This high immunity to noise is expected because the 

set of equations is linear.  However, the simulations of the nonlinear discrete solution 
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Table 2.1: Errors in the predicted distance of the eye's position at different rates of 
measurement error, shown by the differential linear solution. 

Level Noise Average Maximum Maximum 
in 9 P Error p' Error /z' Error A' 
(%) (cm) (96) (deg) (deg) 

1 100,000 1.00 0.08 0.01 
10,000 1.00 0.05 0.03 
1,000 1.00 0.06 0.14 

150 1.01 0.15 0.04 
75 1.01 0.11 0.05 
35 1.02 0.19 0.04 
18 1.03 0.06 0.06 

9 1.02 0.12 0.03 
5 100,000 4.99 0.50 0.10 

10,000 5.00 0.24 0.17 
1,000 5.00 0.28 0.14 

150 5.03 0.70 0.25 
75 5.06 0.26 0.15 
35 5.11 0.52 0.28 
18 5.13 0.79 0.21 
9 5.08 0.53 0.24 

10 100,000 10.00 0.40 0.19 
10,000 9.99 0.52 0.44 

1,000 10.01 0.43 0.84 
150 10.06 0.67 0.61 

75 10.12 1.14 0.46 
35 10.21 1.81 0.53 
18 10.26 2.10 0.29 

9 10.18 1.97 0.52 
20 100,000 20.00 1.30 0.34 

10,000 19.99 0.79 0.24 
1,000 20.02 1.28 1.64 

150 20.12 3.04 0.68 
75 20.24 1.51 1.27 
35 20.44 3.12 1.39 
18 20.51 1.68 0.80 

9 20.42 1.44 0.89 

Note: Data in each row are based on 3,000 steps per run. 



21 

Table 2.2: Errors in the predicated distance of the eye's position at different rates of 
measurement error, shown by the discrete nonlinear solution. 

Noise Level. 
in 6 

(%) 
p 

(cm) 

Maximum 
Error 

P 
(%) 

Average 
Error 

P' 
(%) 

Maximum 
Error 

(deg) 

Maximum 
Error 

A' 
(deg) 

io-4 150 
75 
35 
18 

9 

24.04 
5.32 
2.79 
1.20 
0.29 

3.06 
0.83 
0.17 
0.06 
0.03 

0.01 
0.01 
0.00 
0.00 
0.00 

0.00 
0.00 
0.01 
0.00 
0.00 

IO-3 150 
75 
35 
18 

9 

79.53 
7.15 

14.44 

2.22 
0.56 
0.42 

0.03 
0.04 
0.00 

0.00 
0.00 
0.00 

IO"2 150 
75 
35 
18 

9 

- - - - 

10~2 35 
18 

9 
- - - - 

IO"2 18 
9 

- - - - 

Note:  Data in each row are based on 3,000 steps per run.   Dashes represent unac- 
ceptable results. 
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Table 2.3: Errors in the predicated distance of the eye's position at different rates of 
measurement error, shown by the differential nonlinear solution. 

Maximum Average Maximum Maximum 
Noise Level Error Error Error Error 
in 6 P P P' /*' A' 

(%) (cm) (%) (%) (deg) (deg) 

io-4 150 0.79 0.11 0.00 0.00 
75 0.16 0.03 0.00 0.00 
35 0.02 0.01 0.02 0.00 
18 0.00 0.00 0.10 0.01 

9 0.00 0.00 0.23 0.01 
1(T3 150 8.75 1.18 0.01 0.00 

75 1.26 0.29 0.00 0.00 
35 0.17 0.05 0.03 0.00 
18 0.04 0.01 0.10 0.01 
9 0.01 0.01 0.24 0.01 

IO"2 150 266.37 13.78 0.10 0.01 
75 16.72 2.95 0.04 0.00 
35 1.77 0.56 0.03 0.00 
18 0.35 0.13 0.10 0.01 

9 0.10 0.04 0.25 0.01 
IO"2 35 21.23 5.64 0.11 0.02 

18 3.90 1.31 0.11 0.01 
9 1.00 0.36 0.23 0.01 

IO"2 18 38.28 13.71 0.41 0.06 
9 11.30 3.56 0.24 0.10 

Note: Data in each row are based on 3,000 steps per run. 
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and nonlinear differential (given in the Appendix B), show a high sensitivity to mea- 

surement error (Tables 2.2 and 2.3). The sensitivity to noise increased with increasing 

the distance of the points from the pinhole. Reasonable results with the discrete non- 

linear case could be obtained up to distance of 150cm and with a measurement error of 

10-4discrete case and gave reasonable results at 150cm distance with noise rates below 

10-2is considered, distance estimations calculated by the two nonlinear solutions will 

be considerably improved because the optic flow is more sensitive to parallax for eye's 

translations than for eye's rotations. 

The high degree of accuracy obtained in the linear solution can account for the 

latency interval of the autokinetic movement, e.g. for the time interval where a point 

appears static. Introducing measurement error resulted in polarized jittery fluctuations 

of the reconstructed coordinates of the point (Figure 2.4). This effect is shown because 

in the definition of the transformation matrix M, we implemented the Listing and 

Donders' laws. 

As shown in Tables 2.1 and 2.2, the magnitude that is most sensitive to measurement 

error in all types of solutions is p', while errors in fi' and A' remain relatively small. 

This is because of the uniform distribution noise utilized. This type of noise averages 

to zero and therefore cannot produce large autokinetic movements. On the basis of 

these results we concluded: First, that a non-uniform noise function may be required. 

Second, the noise should be introduced directly to the components of OJ emulating noise 

that penetrates from oculomotor signals. An example of a simulation with "extraretinal 

noise" is shown in Figure 2.5. It was obtained by introducing colored noise (a white 

noise that is integrated by first order linear system) directly to the components of u/. 

2.5    Pure Rotations: Summary 

In this work explicit solutions for the passive navigation problem in pure rotations 

were derived and tested. Two types of solutions were presented for the optic flow 

equations suggested by the SPIN theory.   The first is given in the discrete approach 
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90 
degrees 

-90 
degrees 

Figure 2.4: Stabilization of a single point by simulation of the differential linear solution 
for 10,000 steps. The magnified excursion of the point in the first 50 consecutive steps 
is shown in a circular window representing 16.8 arcmin in diameter. The polarization 
of the excursion steps is due to the implementation of the Listing and Donders laws in 
the definition of matrix M. 
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h90 
degrees 

Figure 2.5: Simulation of the autokinetic movement with 0.5% colored noise penetrating 
from extraretinal signals. The plot depicts the excursion of a point in 100,000 steps. 
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and requires three points and two views (or time derivative). The second is given in 

the differential approach and is applicable to a single point. The first solution does 

not involve any assumptions other than those made in Hadani et al. paper [3], e.g. 

that the visual scene is comprised of static objects, and the pinhole is separated from 

the eye's center of rotation. Thus, this solution just substantiates the statement made 

in that paper saying that information provided by additional points is not redundant. 

However, this solution requires a system that can solve a set of non-linear equations. 

This, in turn, requires solving a fourth order polynomial ending up with 4 roots or 

4 alternative solutions. Even though the criterion to select the correct root is well 

denned, the solution is not unique. Moreover, the simulations found this solution to be 

the most sensitive to measurement error. These drawbacks were removed in the second 

type of solution which is given in the differential approach. This approach involves the 

solution of only 4 linear equations and therefore the solution is unique. Apart from being 

simpler and unique, this solution is applicable for minimal visual conditions comprised 

of a single point. Both solutions show that the Cartesian space coordinates of object's 

points and the movement parameters of the eye can, in principle, be recovered from the 

time derivative of the optic flow. Furthermore, both are metric solutions in which the 

metric unit is the radius of the eyeball. While the implications of the present results to 

machine vision cannot be overlooked, we restrict the discussion to the relevance of the 

procedures to human vision because the motivation was mainly inspired by the features 

of perceptual systems rather than by engineering systems. 

The solutions in the differential approach are novel and may be considered as the 

main contribution of the present work. They are novel because they are based on a new 

assumption, e.g that the retinal projection of any visible spatial point has an extension. 

While the plausibility of this assumption can hardly be refuted, it is interesting to note 

that a system can utilize what is normally considered as noise, or blur, to solve an 

indeterminate problem for a single point. 

Actually, there is a more fruitful way to look at this phenomena. Since the retina 

is composed of individual sensory elements (cones and rods), it can be functionally 
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Figure 2.6: Two possible encodings of a one-dimensional signal: a) representation by a 
Dirac function; b) representation by a Gaussian-like function. See text for details. 
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considered a digital system. Thus, for example, while another biological digital sys- 

tem, cochlea, was proposed by Helmholtz [38] to encode sound by producing a narrow 

response for each specific frequency (resonance theory), it was later refuted by the ex- 

periments conducted by Georg von Bekesy in the 1920s and 1930s. Von Bekesy found 

[37], in contradiction to the resonance hypothesis, that each sound does not lead to the 

resonance of only one narrow segment of the basilar membrane (a local Dirac function 

response) but initiates a traveling wave along the length of cochlea. Different frequen- 

cies of sound produce different traveling waves and these, in turn, have peak amplitudes 

at different points along the basilar membrane. Each frequency, therefore, produces a 

peak at a different position (exactly where Helmholtz had predicted), but, contrary to 

the resonance theory, there is an extension to the sides of the peak. This representation 

of the stimuli in visual [26] and other sensory systems [6] creates a clear advantage over 

"Dirac delta function" representation. There is only a finite number of receptors that 

can respond (see, hear, etc.) to a specific portion of external stimuli and the system 

is faced with the dilemma of a potential undersampling (too few receptors for a given 

area, e.g., - a visual patch). Should the "Dirac" representation be used by the visual 

system, it would imply that the localization of points in space will be limited by the 

resolution of the retina (number of sensors per area of visual field). On the other hand, 

if the representation is encoded by an aggregate (for the eye this corresponds to a group 

of cones or rods), the location of a stimulus may be resolved beyond the resolution of 

the receptive field associated with each individual sensory cell (cone or rod), as is illus- 

trated in Figure 2.6. While the first encoding scheme introduces uncertainty associated 

with the width of the sensor, the second (specifically sensors labeled A and B), will 

allow to pinpoint the location of the stimuli within sensor X. 

Using the intensity function similar to a Gaussian to reconstruct the coordinates of 

the spatial point results in the reconstruction of a spatial disc tangent to the distance 

line. The coordinates of all the points comprising that disc are erroneous except for 

a single central point of that disc for which the computations are physically correct. 

This situation represents a common perceptual experience.  The reader can verify the 
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last statement by observing discrete light sources (stars or road lights) with blurred 

vision. They will appear to him as discs even though the light sources subtend incom- 

parably small angles. Also note that the cut of a specific intensity function with the 

spherical retina is not position invariant but undergoes deformations which depend on 

eccentricity of the projection from the optical axis. This effect did not contaminate 

the present simulations because the latter were restricted to the kinematical aspect 

of the reconstruction process; it should, however, be taken into account when motion 

fields are extracted from a succession of real images. If one wants to use the present 

differential approach to solve for realistic situations where the scene is comprised of 

multiple spatial points, then one should consider two different points, Ri and R^, with 

objective distances p\ and P2 from the pinhole. Each of the two points projects a light 

intensity function. These would appear as two independent continuously differentiable 

intensities centered at the retinal coordinates 8\, <j>\ and 62, <f>2 respectively. Now one 

should consider the superposition of these two independent signals as an input for the 

motion extraction mechanism. 

The novelty of the present work stems mainly from the essential differences that exist 

between the current approach and the alternative solution given apparently for a single 

point [1] and advanced by Longuet-Higgins and Prazdny [10]. First, the critique raised 

by Bruss and Horn [1] against Longuet-Higgins and Prazdny's work holds because the 

latter work assumed that the optic flow always contains a straight-line (or great circle) 

trajectory. In visual reality this is not always the case because normally when we fixate 

there is a considerable amount of torsional eye movements [7]. Torsional component in 

the eye's angular velocity vector rules out the creation of such straight-line trajectories 

in the optic flow. Thus, this model applies only to a special case in which straight 

line in the flow field is detected. Second, the model of the latter authors assumed 

that the visual scene is a continuous textured surface. Even though the projection 

of each surface point is a Dirac delta function, the continuity of the visual surface 

assures that the retinal projection is continuous too and every retinal point has a small 

neighborhood. This assumption justifies taking the spatial derivative of the optic flow 
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but requires, in principle, a point and its near environment which eventually makes 

more than one point. To overcome these drawbacks, we first considered the scene as an 

ensemble of discrete point light sources each having its own distance p from the pinhole. 

Since the distance line of a discrete point has no spatial extension, then p$ = p$ = 0. 

When the scene was assumed to be comprised of continuous surface, we derived enough 

independent equations to eliminate the elements of the gradients of the surface (see 

Appendix B). Therefore, the projection of a single point regardless of its structure was 

sufficient to obtain a solution. In our case, taking the spatial derivatives of the flow 

equations was justified by the assumption about the intensity point spread function. 

The light intensity function creates a small neighborhood to each retinal projection 

even when it is emanating from a spatial point subtending infinitesimally small angle 

[35]. 

The relevance of the present derivations to human vision becomes more apparent 

when one considers the autokinetic phenomenon. This effect in general, and the latency 

interval in particular, shows that the capacity of the human visual system is far beyond 

what was suggested by the most rigorous computational models. Here we argue that 

passive navigation capacity as contrasted to active navigation capacity is essential to 

account for visual stability of a single point. First, we define active navigation as a 3-D 

reconstruction process that utilizes extraretinal signals in addition to retinal signals. 

Second, we note that in the case of active navigation, the indeterminate scale problem 

does not apply, in principle, to visual perception because there are other sources of 

information about the motion of the eye in space. Assuming the extraretinal signals as 

an additional source of information, then there are several reasons for why they cannot 

fully explain visual stability. First, even when the head is fixed and the eye is fixating 

a static point, there are involuntary eye movements that generate permanent slips of 

the retinal image [5]. Second, the level of physiological noise known to exist in the 

oculomotor signals [41] cannot perfectly compensate for the retinal slips of the image. 

Third, retinal slips due to head movements are only partially compensated because 

the vestibular system is insensitive to linear motion [15].   Taking all these reasons 
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together, one must conclude that a considerable amount of image instability should 

normally exist would visual stability being carried out solely on the basis of extraretinal 

information. Moreover, it has been shown that the predicted retinal slips due to noise in 

the oculomotor signals alone, are much larger than the spatial and temporal resolution 

limits of the visual system in detecting comparable slips [3, 22]. Thus, these slips, being 

not perfectly compensated, should be visible. Since they are not normally visible, the 

inevitable conclusion is that they are stabilized more accurately by the retinal signals 

via passive navigation computations. Indeed, this is what all the simulation have shown. 

Introducing measurement error to the observable quantities promptly generated jittery 

movements to the reconstructed point. A smooth unpredictable excursion typical to 

autokinetic movement was best simulated by introducing oculomotor noise. 
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Chapter 3 

Six Degrees of Freedom: General Motion 

3.1    The Retinal Flow Equations for Six Degrees of Freedom 

We now extend the model such that any general motion of the observer is allowed. 

Since the pure rotations constitutes just a special type of general motion, many previous 

results are still applicable to the six degrees of freedom. Therefore, after the extended 

flow equations are derived, only differential (linear) case will be considered. As can be 

seen from the derivations provided in the Appendix D, the discrete approach gives a 

solution to the same unknowns and does not provide any additional information. 

Using the exact same conventions as before, we start with any visual point as defining 

an esoteric inertial space with an origin not necessarily coinciding with the point itself. 

The major difference is that the observer's motion may consist of up to 6 independent 

degrees of freedom denoted by v and u\ where v = [vx(t), vy(t),vz(t)] is the translatory 

velocity of the eye coordinate system, and UJ = [u>x(t), uy{t), uz(t)] is the angular velocity 

of the eyeball. Since the eye coordinate system no longer coincides with the world 

coordinate system, the new situation may now be represented as shown in Figure 3.1. 

Thus, we have: 

R = r+Ro, (3.1) 

where R is the position vector of object point in the point space, r is the distance 

between the eye's system origin and the point, and Ro is a vector connecting the 

point's system origin with the eye's system origin. Then, the visual point R can be 

given in terms of the eye system notation r by the transformation: 

r=-Ro + MR, (3.2) 
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Figure 3.1: Definition of systems of coordinates in the SPIN theory for the general 
motion (rotation and translation) case. Note that the origins of X, Y, Z and x, y, z 
coordinate systems no longer coincide. 



• 34 

where M is an orthogonal transformation matrix the elements of which are A, /i, and 

• 
v as before. The absolute time derivative of R with respect to time is then: 

<fR      dRo     dr            .,,         ,                                          .„ „, 
dt  =   dt

+dt+UJX^ + r) = °>                                 (3-3) 

where the right hand of the equation is given in the inertial coordinate system, while 

the right hand side is in the eye coordinate system. Since -^jf- + ui x Ro is the velocity 

of the eye, v, in the eye system, we then have: 

dRo ,,       dr dr „ . 
—- + UJX Ro + -7r + o;xr = v+ — + w x r = 0. 3.4 

at at at 

Expanding equation (3.4) and substituting for x, y leads to a the following equations: 

.  .   9   .   ±       9      9   .   ±       ■  .  9      ± vx + psin-sin<p + p-cos-sinq» + pepsin-cosq>+ 

9 9 
ujypsin-coscf) - LUZ(C + pcos-)    =    0 (3.5) 

.      9       9.9 .  9   .   1 vy + pcos- — p-sin- + <jjzpsin-sinq)— 

e 
cjxpsin-cos<ß   =    0 (3-6) 

.  .  9      ±       9     9      t       :  .  9  .   1 vz + psin-coscp + p-cos-cosq> — pq>sin-sincp+ 

9 9 
wx(c + pcos-) — Wypsin-sincf)    =    0. (3-7) 

Eliminating p in (3.5)-(3.7) and solving for 9 and cf>, the basic flow equations are then: 

19 9 9 
9   —    -(vysin- — (p + ccos-){tj}xcos(j> - uizsin<f>) — cos-(vxsin<p + vzcos(p)),(3.8) 

• 9 .uzcos<j) + cjxsin<f>     vzcos<f> - vxsin<f> ,n   . 
4>   =    {c + pcos-) — + — uv. (3.9) 

2 psm^ psm% 

Reader may easily verify that should vx = vy = vz = 0, the above flow equations will 

become exactly the same as for the pure rotations (equations (2.13) and (2.14)). 

3.2    Solution of the Flow Equations 

Equations (3.8) and (3.9) can now be differentiated twice with respect to 9 and <fi, 

producing additional 12 equations that are listed in the Appendix C (assuming pe = 
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Pt — 0). After eliminating dependent equations, one can solve for the angular velocity 

of the eye, giving: 

u)x   =   Asincj) — Bcos<f>, (3.10) 

uy   =    -4>-4><M>, (3-11) 

uz    =    Bsin(j} + Acos4>, (3.12) 

(3.13) 

where 

cos- ■ 
A   =    —+<j>u-2<pB, (3.14) 

B   =   29ee + 9-. (3.15) 

Also, the following visual field invariances associated with the distance to the visual 

point and the motion of the eye in space can be computed: 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

Since the distance p is not known, the computational model can not solve for va, Vb, or 

vy directly. This implies that there is no hope to obtain components D or E, which are 

necessary to solve for 

vx   =   Dsiruj} - Ecos(f>, (3.23) 

vz    =    Esin<f> + Dcos(j>. (3.24) 

where 

va _ -Ve<t> 

p sznf 
Vb 

p 
= r,        0        1      ■ —Bcos- — fasln 

vv 9,^ + 9 

p 2sin| 

Va 
= cA + E, 

Vb = cB - D, 

D = vzcos(f> + vxsin<f>, 

E — vzsin(f> — vxcos(f>. 
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The three invariances in (3.16) - (3.18) clearly are not enough to solve for the four 

unknowns: p, vx, vy, and vz. Therefore, some additional constraints must be imposed 

on the motion, which we will investigate next. 

3.3    Biologically Plausible Constraints 

The search for additional constraints can be substantially reduced if we consider the 

global characteristics of the problem at hand. Since it is possible to compute the 

rotational components, omega, from the optic flow for any general motion, we should 

look at the effects of the translation and rotation separately. A common problem that 

plagued other solutions is that for any given linear motion, say V, and any distance to 

some visible point, say r, we can multiply them both by some constant, say Q, such that 

the new motion is now QV and the distance is Qr. As a result, in the previous models 

the observed effect on the optic flow generated by the former was indistinguishable from 

the latter, a problem known as indeterminate scale problem. 

In the SPIN theory one distinguishing element is a fixed radius of the eyeball, c. 

While magnitudes of the motion may be changed, the radius remains fixed. Therefore, 

consider the following situation (Figure 3.2). Let both, - the rotation and the transla- 

tion, be along the same line, - say z axis. Then, the slip of the image will be a function 

of two components: the drift along the z axis due to translation and, at the same time, 

a drift along the x axis due to rotation. Here, doubling the distance to the visible point 

and at the same time doubling the translation vector will result in the same drift along 

the z axis, but the drift along the x axis (due to rotation), will remain the same as long 

as the radius of the eyeball remains constant in both cases. The only two possible ways 

to produce exactly same displacement on the retina are: 

a) to compensate with an appropriate translation along the y axis (forward or back- 

ward). (Note that in this case the final position of the eyeball will coincide with 

the previous case.) 

b) to compensate with an appropriate translation along the x axis (left or right). 
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a) c) 

b) Q~ 
dY 

d) ®—h 
i    i i 
!      i  l 

dY 

f 

dX dX 

Figure 3.2: Projection of a point (P) onto a small segment of a retina: a) initial projec- 
tion; b) after vertical motion and rotation (shaded); c) the same motion but distance 
(D) is doubled; d) after distance (D) and linear motion doubled, while rotational com- 
ponent is left unchanged. See text for details. 
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In either case above, what is required is a change in the direction of the translation 

vector. This directional sensitivity of the system, therefore, identify the two natural 

constraints that may be used to solve the problem: 1) explore some well denned relation 

between direction of the rotation vector and the translation vector, or, 2) explore some 

well denned property of a direction associated with the translation vector alone. 

The first suggestion points to vestibulo-ocular reflex (VOR). Traditionally, it has 

been described as a distinct, phylogenetically old oculomotor subsystem, which serves 

to stabilize the gaze direction. It is suppose to act as a stereotyped reflex with definite 

input-output relations. As a reflex, it should also show when a subject is rotated 

passively in the dark. On the basis of eye movement measurements in the dark, however, 

Collewijn [11] argued that the traditional view of the VOR is not realistic. He suggests 

a more fruitful hypothesis that the vestibular signals are just one of many inputs to a 

spatial localization process, which computes the relative position (and motion) between 

the subject and the target of his choice. If, in addition, VOR provide the angle between 

the rotational and translational components of the motion (by keeping it fixed), say 

alpha, then there is an additional relationship that can be used by the system 

V ■ cj = \V\\oj\cosa. (3.25) 

This leads to a second order equation in p (see Appendix E). It turns out that out of the 

two possible roots, one always places the visual point within the radius of the eyeball, 

while the other gives the true distance to the point. Thus, it enables the system to 

resolve the ambiguity by choosing the solution that is larger than c (radius of the eye). 

Unfortunately, one must be very careful in exploiting this constraint. First, VOR 

involves choosing some visible point in the scene (fixation point), and minimizing retinal 

slips of this point on the retina (9 = 4> = 0). This is clearly an active task and falls 

outside of the domain of passive navigation. Second, if the angle that VOR is trying to 

preserve is 90 degrees, then cos(a) = cos(90) = 0 and equation (3.25) above becomes 

homogeneous. As such, it does not provide any additional information and, therefore, 

we are forced to avoid the orthogonality between v and u. 
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The other possible constraint stems from the fact that the mass of the observer's 

head is much larger than the mass of the eye. Therefore, it is expected that for a 

sequence of views, while the rotation vector varies, the direction of the translational ve- 

locity in the world coordinate system remains approximately fixed (quasi-linear). Since 

the solution for the rotational component allows us to compute the exact orientation of 

the observer at any moment in time, it becomes a simple task to predict the direction of 

the translation vector for a sequence of frames when its direction remains approximately 

fixed. Formally, we than have the following new equations: 

Yt = /(') * ° (3-26) 

while 
dY 
S = 0 (3.27) 

This produces a system that can be solved either by differentiating the flow equations 

with respect to time or, alternatively, using three (or more) views. The latter is similar 

to the discrete case, except instead of using multiple points we are using multiple views 

of the same point. For a linear constant motion, then, it requires three views, for the 

linear acceleration, - four views, etc. (see Appendix F) for the example of linear motion 

solution). 

3.4    Discussion 

So far, we have dealt with the need of passive navigation capacity to account for visual 

stability. The mathematical derivations have shown that the problem of visual stabil- 

ity cannot be separated from the problem of absolute distance perception because the 

amount of retinal motion depends also on the distance of the point from the pinhole. 

Both problems are reconciled by the SPIN theory with the assumption about the in- 

trinsic metric scale. The metric scale enabled accurate decomposition of changes in 

retinal projection into their distance and eye rotation components. The significance of 

metric scale in mental representation is discussed next. 
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Everyday experience in perceiving constant object shapes from changing perspec- 

tives in varying contexts indicates that vision acquires information about the spatial 

structure of environmental objects with impressive speed, reliability, precision, and 

stability. Geometrical optics, however, predicts that the retinal image of objects are 

changing and deforming from moment to moment. One interpretation of the perceived 

constancy of position and size is given by Gibson [8, 9] and is based on the conjecture 

that dynamics retinal projections preserve certain invariants, and higher order variables 

which are picked up and yield a direct perception of the object's constancies. While 

the Gibson's explanation is of a qualitative nature, the modern computational models 

facing the indeterminate-scale problem have tried to solve the perceptual constancy 

phenomenon with affine geometry [39, 25]. But, the reconstruction of 3D objects in 

these models is restricted to an arbitrary affine transformation, and therefore yields 

only relative depth perception. This type of solution does not fully account for the per- 

ceptual constancy of position and size and raises the question of performance without 

a veridical scale. 

The question of metric scale in mental representation may be ignored or disregarded 

in several ways: One may argue that physical scales with regard to the mind's eye are 

meaningless because the mind is a metaphysical entity and physical scales are irrele- 

vant. Or alternatively, to argue that the mind's eye is tolerant with certain distance and 

magnification paradoxes typical to prosthetic vision situations [13, 19]. These situations 

evoke image instability that may result from modified metric scale [12]. The plausibility 

of this solipsistic view evaporates when one considers motion sickness that results when 

the visual input contradicts a veridical kinesthetic input. One may argue that space 

perception is not always veridical (or never veridical) by referring to the endless list of 

known visual illusions. Also one may assume that the perceived space is represented at 

the mind's eye in an arbitrary scale. Then each observer may have her esoteric scale. 

These types of solutions immediately raise epistemological questions about visiomotor 

coordination within the organism as well as how successful communication can be car- 

ried out between different organisms having different scales (e.g., when two people have 
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to reach, manipulate and/or carry an extended object). Another theoretical solution 

is to scale the perceived world on the basis of external information. As for the human 

visual system, it was postulated that motor interaction with the physical objects may 

calibrate and converge the representation to veridical metric scale (this postulate was 

raised by the empiricistic school as a supplement to the classical cue theory of space 

perception). However, no one has shown mathematically how the kinesthetic sense is 

scaled. Thus this explanation remains circular because the scaling problem applies to 

kinesthetic sense as well as to the visual sense. Finally, one can suggest that the repre- 

sentation of objects may be calibrated on the basis of other external magnitudes such 

as the height of the eyes above the ground [24]. Note that this type of explanation, 

due to the indeterminacy of the solution, cannot tell whether the subjective scales of 

different observers are the same. 

The SPIN theory suggests a simple way to break this circularity by the assumption 

about the existence of intrinsic metric scales. In monocular vision the radius of the 

eyeball serves as one of these scales. Recent measurements on the ocular occlusion 

phenomenon have shown that in human observers this magnitude is about llmm30. 

Furthermore, when an eye in 6 degrees of freedom is considered, the distance between 

the origins of the eye and head systems presumably serves as an additional scale [12]. 

The latter distance is much larger magnitude if one centers the origin of the head-system 

in the ipsilateral vestibular organ. Analogously, for binocular vision the distance be- 

tween the eyes, known as the inter-ocular distance, is the scale. A psychophysical 

support for the latter conjecture was recently obtained by showing that the perceived 

depth in random dot stereogram was highly correlated with the observer's inter-ocular 

distance [13, 18]. Furthermore, depth judgments of 45 subjects fall nicely on the theo- 

retical curve calculated from a formula that is based on triangulation. This finding has 

received additional support by neurophysiological measurements showing that cells in 

VI of monkeys respond to the absolute depth of the display [40]. While it is simpler to 

show that the inter-ocular distance may have a role in establishing metric scale in stere- 

opsis, it is a much more difficult task to show that same applies to monocular vision. 
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Currently, we plan to pursue analogous measurements with monocular vision. However, 

given that the dependence of stereoscopic depth on the inter-ocular-distance indicates 

the existence of metric scale in binocular vision, it is unlikely that the monocular mech- 

anism utilizes an indeterminate-scale solution, as suggested by the common view. Thus, 

we conclude that the visual system as a whole reconstructs objects with a metric scale. 

The present work shows that this type of solution is mathematically feasible. Moreover, 

the assumption made by the SPIN theory about the metric representation nicely solves 

the position and size constancy problem because if the mental representation is given in 

terms of object's coordinates undergoing linear transformation, then the position and 

the distance function are preserved. 
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Appendix A 

Alternative Basis 

Generally, the motion parameters of an object through space can be conveniently spec- 

ified by a two three-dimensional vectors: u> = [ux,cjy,uz] and v = [vx,vy,vz]. Due to 

the model that was chosen to mimic the mechanics of the eye (a pinhole camera), it is 

more convenient to use an alternative representations that are specific to the projection 

of a specific point onto the retina. The alternative velocity parameters of an observer 

associated with any projection p = [9, <f>] form then an alternative basis: 

VP   = 

Uy 

B 

D 

(Jy 

E 

(A.l) 

(A.2) 

where 

A = uxsin<j> + ujzcos(f), 

B = uzsin4> — ujxcoscf>, 

D = vzcos<p + vxsin(j), 

E — vzsin(f> — vxcos(f>. 

(A.3) 

(A.4) 

(A.5) 

(A.6) 

It is very simple to verify that the basis transformation can be directly obtained by: 

M,b ■ up = uj (A.7) 
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and 

M\, • vp = v (A.8) 

where 

sincj)   0    -coscp 

Mb=        0      1       0 (A.9) 

coscf>   0     sincj) 

The inverse transformation is then given by using the inverse of the matrix Mb, 

which is, since Mb is orthogonal, just a its transpose (Mb-1 = Mj,  ). Using wp and vp 

simplifies the mathematical expressions and, since they form the true basis (solving for 

one provides the solution for the other), they will be used in the following derivations. 
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Appendix B 

A Solution for a Single Point on a Continuous Surface 

We assume that the objects of vision are composed of continuous surfaces. Differenti- 

ating equations (2.13) and (2.14) with respect to 6 and (f> yields: 

=    --Bsin- -2cB^cos-, (B.l) -Bsin- — 2cB—rcos- 
p 2 p2      2 

L   =   2A(I + -COS-) -2CB^COS-, (B.2) 
\       P      2) p2      2 

1     - (1 + -cos- + 2cP-\sin- ] , (B.3) 
\      p      2 p2      2) 2sin2l \      P      2 pi* 2 

B    (     9     c\       cApt 
:BA) 

5zn| \     l     pj      pzsin% 

The gradient components pg and p$ can be eliminated in (B.l) - (B.4), yielding the 

following two independent equations: 

A n      / ft \ 

A$e - BfosinO   =     j [cos- + -cosd) , (B.5) 
sin| \     2     p       J 

AQ\ - BfasinB   =   2-cos- (A2 + B2) + 2A2 + 2B2cos2-. (B.6) 
p      2 V ' 2 

Equations (2.13), (2.14), (B.5), and (B.6) constitute a set of four independent non- 

linear equations with four unknowns that is valid for a single point irrespective of surface 

structure. The solution for this set of equations is obtained in the following way: first, 

expressions A, B, A2, and B2 are substituted into equations (B.5) and (B.6). Then 

an expression for (t>-\-uy is isolated from equation (2.14) and substituted into equation 

(B.5), leading to the following expression in p: 

B\sin\ - *J*4«nf + g*«w§ - jjLcoaf + ^1 = ^ * <t>9 * 2<pg ' 20g i 4$0»n| 

flc(g<,+<^) fl'c'am'f  29<frg          

2*(p+eco.§)        4*,(P+CCO,§) (2g,_gcotl + ±^)3in6aint 

(B.7) 
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The left-hand side of (B.7) comprises only observable quantities and the compound 

unknown p + ccos^ . Substituting ip = p + ccos^ into equation (B.7) produces a cubic 

polynomial in tfi, where all the coefficients are combinations of observable quantities. 

Solving this polynomial for tfr yields three roots: one is real and the other two are 

imaginary conjugates. We take the real root as a solution for calculating p. The other 

unknowns are then solved for using equations (2.13) and (2.14), and either (B.5) or 

(B.6). 

Even though this solution takes into account all aspects of retinal projection for 

distance calculations, it is unlikely that a biological system can utilize it. The solution 

is, however, applicable to machine vision. 



47 

Appendix C 

Flow Equations for the General Motion 

Assuming p^ = p$ = 0, differentiation of equations (3.8) and (3.9) twice with respect 

to 6 and (f> yield the following additional twelve flow equations: 

i r   . ^, „ o 
-   -sin- [cB — D) + vvcos- 
p[        2K '      y      2. 

.   6 cA + E 
—sin , 

2      p 
1 

—cos- {cB — D) — VySin- 

[p + ccos-) p + ccos^ ) A + cos-E 

• .  6cA + E 
v&   =   -sin-—-—, 

2      p 
2 

&<txt>    ~    ~   C°s-D — [p + ccos- t-D-^p + ccos-) 

(p + ccos^j A + cos\E 

-1psin2% 

cos\D - (p + ccosfj B 

-2psin2\ 

2Acos\p + (cA + E)(l + co32|) 

4psin3x 

D - (c + pcos^J B 

psin^ 

(p + ccosf) B -cos\D 

2psin2\ 

(c + pcos^j A + E 

psin^ 

(C.l 

(C.2 

(C.3 

(C.4 

(C.5 

(C.6 

(C.7 

(C.8 

(C.9 

(CIO 

(C.ll 

(C.12 

Equations (3.8), (3.9), and (C.l) - (C.12) are independent in A, B, uy, 
(cB  P), 
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^——i, and ^. Therefore, multiplying by matrix Mp, we can solve directly for UJX, OJZ, 

^v» S!iJ^i, ^=^, and ^.  Since k^1, v-f, and ^±^ are inseparable, the flow 
p     '      p     ' p p     '   p > p 

equations can not be solved for either D, E, vy, or p. 

m 
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Appendix D 

General Motion, Discrete Case Along Same </> 

For mathematical simplicity, let us use points along same <j). Also, we need the following 

substitutions: 

va = cA + E, (D.l) 

and 

vb = cB - D. (D.2) 

Solving equations (3.8) and (3.9) for p and equating the two, we have: 

. . a ä   OR / O . \ 
vy [4> + Uy) tan- - va——- + vb ( -Acot- + 4>) = vyA - (cB - D)uiy.       (D.3) 

The following definitions simplify the above expression: 

G,    =    V^, (D.4) 

G2   =    £*L, (D.5) 

G3   =    VA (D.6) 
Va 

G4   =    ^, (D.7) 
Va 

G5   =    *vA-(<B-D)u>y 

Va 

Thus, after rearranging terms, equation (D.3) can be written as: 

J-B + tan6-G^ + tan6-G2 - ^ - G3cot6- + G<j> = G5. (D.9) 

Taking two different points (along same (f>), say i and j, results in two equations in 

the form of (D.9). Subtracting one from the other yields: 

2 2 2    ^ /      9- 8 ■    \ 
-r-z r-r-    B + [tan—j>i-tan-3-fa)Gi + 
stnOi     sinBjj \      2 2     ) 
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tan-j- - tan-*- 1 G2 + ( -cot-± + cot-j- 1 G3+ 

where subscripts i and j refers to a specific point. Thus, for any two general point, say 

i and j, define the following functions: 

ainö,'      sin6j' 
9- 6 • 

F02(i,j)   =   tan-^4>i-tan-+4>j, (D.12) 
a. a. 

F03(i,j)   =   tan-±-tan-±, (D.13) 

*04(t,j)   =    -cot-i + cot-i, (D.14) 

Fos(i,j)   =   k-ij> (D-15) 

sinOi     sinOj 

Now, overwriting (D.10) for any two point i and j, yields: 

F01(i,j)B + FQ2{i,j)Gx + F03(i,j)G2+ 

F0*(i,j)G3 + FQ5(i,j)G4 + F06(i,j) = 0. 
(D.17) 

Equation (D.17) can now be solved for B. Using three points, say i, j, and k, one 

can get two independent equations of the form of (D.17) (e.g., - one for i and j, and 

the other for i and k). Subtracting one from the other (effectively solving for B - B), 

results in: 

\ Foi(ij)   + F01(i,k)J Ul + V Foi(iJ)   + F0,(i,k)) ^2 + 

; (D.i8) 

-Fot(i,j)   ,   F0i(i,k) _ n 

Foi\i,j)   + F0[{i,k) -U- 

The pattern becomes now evident. We rename terms for G\ through G4 and the 

constant term at the end to be some new functions, say Fil(i,j, k) through f\5(i, j, k). 

Solve for G\, add a new point, and then subtract two equations. Continuing in this 

fashion, produces exactly the same results as in differential case. A minimum of five 

points are necessary to solve for A, B, uy, jf-, and jj*. Any additional points beyond the 

initial five are redundant. This restriction manifests itself through the fact that some 
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G{ terms can not be solved for (the Fpq(- ■ •) coefficient become identically zero, as, for 

example, is in the case of Gz above). Since the same expressions can be extracted in 

both, - discrete and differential cases, - it is only logical to conclude that the additional 

constraints described before are necessary to solve for the distance to the five points 

and the translational component of the observer's velocity. 
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Appendix E 

Polynomial Solution for General Motion 

Suppose that the angle between the vector of rotation (omega) and the translation 

vector (v) is somehow available to the system. Then, here we show how this additional 

constraint can be used to solve all remaining unknowns. To start, observe that the dot 

product of two vectors is given by: 

u • v = uxvx + uiyVy + u>zvz = \u>\\v\cosa, (E.l) 

where a is the angle between the two vectors. Since the components of the translation 

vector can be expressed in terms of p, equation (E.l) can be rewritten in the form: 

Cap2 + Cbp + Cc = 0, (E.2) 

where 

r-A(cB-D) + B(cA + E) + u;yvyy       1 
[ p J   |a>|cos2ct' 

P P 
Cc   =   c2B2 + c2A2. (E.5) 

The coefficients Ca, Cb, and Cc can be readily computed. Therefore, p can be 

obtained by solving the polynomial equation (E.2). Although it is a second order 

polynomial, one of the roots always places the point inside or behind the eye. This 

breaks the ambiguity associated with this mathematical construct and the true distance 

(p) can be identified. By using this p, all other unknowns can be obtained from the 

other previously computed field invariances: *—£—^, ^—^—*-, and ^. 
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Appendix F 

Three Views Solution For General Motion 

By using the basis transformation matrix Mj, and field invariances 2a, ^, and ^, the 

new relations are derived: 
cux + vz 

cwz — u 
v. 

= A, (F.l) 

v  = r. (F.2) 
C(JZ — v^ 

where A and T are computed from equations (3.16)-(3.18). 

Rearranging terms, (F.l) and (F.2) can be rewritten as: 

Avx + vz = N1 (F.3) 

Tvx + vy = N2 (F.4) 

where N\ and JV2 are Kcuz — cux and TCLJZ respectively. Since the rotational compo- 

nent of the motion can be obtained from equations (3.10)-(3.15), the transformation 

matrix M can be computed at every step. Therefore, equations (F.3) and (F.4) can be 

expressed in the inertia! space as: 

(Atm\<1 + m\tl)vx+(Atml2 + ml2)vy + (Atml3 + mt
3i3)vz    =   N*,   (F.5) 

(rXa + <i)^ + (rX,2 + ^2,2)^+(rX>3 + <3)^  =  N*2. (F.6) 

where t represents time and m\^ are the elements of the M(<) rotation matrix. If the 

translations! component, V, is assumed to change linearly from view to view, then, by 

taking three views, we have four equations and four unknowns: tree components of V 

and some scalar linear acceleration component. This assumption enables the system to 
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solve for the scaled translation and the acceleration: 

1   " DQ 

where 

(F.7) 

T, Q3,lQa,3^1,l ~ Q3,lQl,3^2,l ~ ^3,3^2,1^1,1 + «3,3Ql,l #2,1 ,„ ., 7y - —                                                                , (F.8) 

T/ _ Q3,iQ2,2#i,i - ^3,2^2,1^1,1 - «3,i«i,2#2,i + Q3,aQl,1^2,l ,„„* 
V. - —                                               , (F.9) 

#«     =     ^3,2^2,3^1,1 - ^3.2^1,302,1 " «2,3^1,2^3,1- 

«2,2«3,3<?1,1 + Ql,2«3,3«2,l + QljQziQz,!, (F.10) 

«i,i = HMi. (F-n) 
«2,i    =   rtm«1(i + m^, (F.12) 

Qw = ^i.2 (r'+XJ1 + "4?) - ^a,2 (A^mJS1 + "4J1) •      (F-13^ 
^i.i = 2cAto;<-cu4) (F.14) 

tf2>1 = 2cr'w«, (F.15) 

JV1>2 = 2cAt+1^+1 - cu4+1, (F.16) 

#2,2 = 2cr'+1wi+1. (F.17) 

for i = 1,2,3 and time t. Once the velocity has been computed, the linear acceleration 

can be extracted from: 

Vt+1 = a-Vt (F.18) 

and, therefore, 

a = »M (r<+X+i + mm) + Vy (rt+X+i + mm) + ^ (rt+imen-3i + ^+1) _ 

(F.19) 

Applying the transformation matrix (either M(<) or M (t + 1)), the system can now 

obtain the velocity vector v in the eye coordinate space.  This allows to solve for all 

other unknowns, including distance to the point. 
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